帳號:guest(52.15.63.145)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂文翔
作者(外文):Lu, Wen-Shiang
論文名稱(中文):雞細胞激素介白素-1 beta之高解析度結晶學結構顯示與人類介白素-1 beta在受體結合上的差異
論文名稱(外文):High-Resolution Crystal Structure of Chicken Cytokine Interleukin-1 beta Reveals Differences in Receptor Binding Compared to Human Interleukin-1 beta
指導教授(中文):殷献生
指導教授(外文):Yin, Hsien-Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:9780560
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:51
中文關鍵詞:介白素-1 beta分子動態模擬細胞激素
外文關鍵詞:chickeninterleukin-1 betamolecular dynamics simulationcytokine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:142
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
人類的介白素-1 beta (interleukin-1 beta, IL-1 beta) 為免疫系統中一個已被廣泛研究的細胞激素,其所涉及的反應除發炎外也包含了細胞增生、分化以及細胞凋亡等生理現象。五種禽類 (雞、鴨、鵝、火雞、鴿子) 的介白素-1 beta 對於哺乳類 (人類、鼠科) 在蛋白質序列上具有 31-35% 的相似度,然而至今尚未經過完整的研究。在本研究中,我們彙報了解析度達 1.58 埃 (angstrom) 的雞介白素-1 beta 重組蛋白質的結晶學結構,這個蛋白質在結構上包含了 12 個 beta-摺板 (beta-strand) 與 1 個 alpha-螺旋 (alpha-helix) 等二級結構,並進一步形成一個圓桶狀的構型。雞介白素-1 beta 對於其受體的模型建立與受體結合運算,在交互作用的位置上與人類介白素-1 beta 比較後顯示出了一些不同處。分子動態 (Molecular dynamics, MD) 模擬則顯示出經過與受體結合,在結構動態變化範圍上的顯著改變。雞介白素-1 beta 在結構上的 3 號與 9 號圈環 (loop) 在與受體結合前具有顯著的波動,一旦發生結合,這些圈環的可變動性則因為與受體的直接結合而明顯地降低。總結而論,這些結果說明與受體結合後所導致的不僅傾向於合適的焓值 (enthalpy) 同時也包括在結構上較低的熵值 (entropy).
Human interleukin-1 beta (IL-1 beta) is an important cytokine in the immune system which involves in inflammatory response, cell proliferation, differentiation and apoptosis, has been studied extensively. Five avian (chicken, duck, goose, turkey and pigeon) IL-1 betas share 31-35% protein sequence identity to mammal (human and murine) and are less well understood. In this study, we report the crystal structure of recombinant chicken IL-1 beta, to 1.58 angstrom resolution. The protein structure is comprised of 12 beta-strands and 1 alpha-helix, which form a barrel-shaped conformation. Modeling ligand docking of chicken IL-1 beta to its receptor reveals some differences at the site of interaction compared to human IL-1 beta. Molecular dynamics (MD) simulations reveal significant changes in the dynamic range of motion on receptor binding. The Loops 3 and 9 of chicken interleukin-1 beta have the most significant fluctuation before receptor binding. Upon binding, the flexibility of these loops, which are in direct contact with the receptor, markedly decreases. Taken together, these results suggest that receptor binding leads to not only favorable enthalpy but lower conformational entropy.
Chapter 1............................................................................1
Introduction ......................................................................1
1.1 Interleukin-1..............................................................1
Chapter 2............................................................................5
Materials and Methods..............................................................5
2.1 Materials..................................................................5
2.2 Expression and Purification of Chicken IL-1 beta...........................5
2.3 Functional Assay of the Recombinant Chicken IL-1 beta......................6
2.4 Biophysical Properties of Recombinant Chicken IL-1 beta....................7
2.5 Crystallization of Recombinant Chicken IL-1 beta...........................8
2.6 Structure Determination and Refinement.....................................8
2.7 Structure Analysis........................................................10
2.8 Molecular Modeling and Receptor Docking of Chicken IL-1 beta................11
2.9 MD Simulations for the IL-1 beta/IL-1R Type I Complex.....................11
Chapter 3...........................................................................14
Results and Discussion............................................................14
3.1 Functional Assay and Biophysical Properties of Recombinant IL-1 beta......14
3.2 Structure Determination...................................................15
3.3 Temperature Factors and HB Interactions...................................17
3.4 Electrostatic Potential Surface Map.......................................18
3.5 Hydrophobic Cavity........................................................19
3.6 Molecular Modeling of Chicken IL-1R type I................................21
3.7 Molecular Docking of Chicken IL-1 beta to its Receptor, IL-1R type I......22
3.8 MD simulations............................................................24
Chapter 4...........................................................................28
Conclusions......................................................................28
Figures and Figure Lengends.........................................................30
Table...............................................................................46
References..........................................................................47
1. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27: 519-550.
2. Arend WP, Palmer G, Gabay C (2008) IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev 223: 20-38.
3. Allan SM, Tyrrell PJ, Rothwell NJ (2005) Interleukin-1 and neuronal injury. Nat Rev Immunol 5: 629-640.
4. Krelin Y, Voronov E, Dotan S, Elkabets M, Reich E, et al. (2007) Interleukin-1beta-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors. Cancer Res 67: 1062-1071.
5. Dinarello CA (2007) Mutations in cryopyrin: bypassing roadblocks in the caspase 1 inflammasome for interleukin-1beta secretion and disease activity. Arthritis Rheum 56: 2817-2822.
6. Nakae S, Asano M, Horai R, Iwakura Y (2001) Interleukin-1 beta, but not interleukin-1 alpha, is required for T-cell-dependent antibody production. Immunology 104: 402-409.
7. Fantuzzi G, Zheng H, Faggioni R, Benigni F, Ghezzi P, et al. (1996) Effect of endotoxin in IL-1 beta-deficient mice. J Immunol 157: 291-296.
8. Dinarello CA (2009) Interleukin-1Beta and the Autoinflammatory Diseases. N Engl J Med 360: 2467-2470.
9. Okamoto M, Liu W, Luo Y, Tanaka A, Cai X, et al. (2010) Constitutively active inflammasome in human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of interleukin-1beta. J Biol Chem 285: 6477–6488.
10. Shuiping Tu GB, Guanglin Cui, Shigeo Takaishi, Evelyn A. Kurt-Jones, Barry Rickman, Kelly S. Betz,, Melitta Penz-Oesterreicher OB, James G. Fox, and Timothy C. Wang (2008) Overexpression of Interleukin-1b Induces Gastric Inflammation and Cancer and Mobilizes Myeloid-Derived Suppressor Cells in Mice. Cancer Cell 14: 408–419.
11. Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, et al. (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci U S A 100: 2645-2650.
12. Wu YF, Liu HJ, Chiou SH, Lee LH (2007) Sequence and phylogenetic analysis of interleukin (IL)-1beta-encoding genes of five avian species and structural and functional homology among these IL-1beta proteins. Vet Immunol Immunopathol 116: 37-46.
13. Sick C, Schneider K, Staeheli P, Weining KC (2000) Novel chicken CXC and CC chemokines. Cytokine 12: 181-186.
14. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87: 2095-2147.
15. Introna M, Breviario F, d'Aniello EM, Golay J, Dejana E, et al. (1993) IL-1 inducible genes in human umbilical vein endothelial cells. Eur Heart J 14 Suppl K: 78-81.
16. Pashine A, Valiante NM, Ulmer JB (2005) Targeting the innate immune response with improvced vaccine adjuvant. Nature Medicine 11: S63 - S68
17. Maliszewski CR, Sato TA, Vanden Bos T, Waugh S, Dower SK, et al. (1990) Cytokine receptors and B cell functions. I. Recombinant soluble receptors specifically inhibit IL-1- and IL-4-induced B cell activities in vitro. J Immunol 144: 3028-3033.
18. Ren K, Torres R (2009) Role of interleukin-1beta during pain and inflammation. Brain Res Rev 60: 57-64.
19. Fleischmann RM, Tesser J, Schiff MH, Schechtman J, Burmester G-R, et al. (2006) Safety of extended treatment with anakinra in patients with rheumatoid arthritis. Ann Rheum Dis 65: 1006-1012.
20. Yu B, Blaber M, Gronenborn AM, Clore GM, Caspar DL (1999) Disordered water within a hydrophobic protein cavity visualized by x-ray crystallography. Proc Natl Acad Sci U S A 96: 103-108.
21. van Oostrum J, Priestle JP, Grutter MG, Schmitz A (1991) The structure of murine interleukin-1 beta at 2.8 A resolution. J Struct Biol 107: 189-195.
22. Jr JCC, Roy M, Jennings PA (2001) Core and surface mutations affect folding kinetics, stability and cooperativity in IL-1 beta: Does alteration in buried water play a role? J Mol Biol 307: 657-669.
23. Weining KC, Sick C, Kaspers B, Staeheli P (1998) A chicken homolog of mammalian interleukin-1 beta: cDNA cloning and purification of active recombinant protein. Eur J Biochem 258: 994-1000.
24. Vigers GP, Anderson LJ, Caffes P, Brandhuber BJ (1997) Crystal structure of the type-I interleukin-1 receptor complexed with interleukin-1beta. Nature 386: 190-194.
25. Klasing KC, Peng RK (1987) Influence of cell sources, stimulating agents, and incubation conditions on release of interleukin-1 from chicken macrophages. Dev Comp Immunol 11: 385-394.
26. Kumar S, C. MP, Lehr R, Tierney L, Tzimas MN, et al. (2000) Identification and initial characterization of four novel members of the interleukin-1 family. J Biol Chem 275: 10308-10314.
27. Himly M, Foster DN, Bottoli I, Iacovoni JS, Vogt PK (1998) The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology 248: 295-304.
28. Yin HS, Shien JH, Lee LH (2000) Synthesis in Escherichia coli of avian reovirus core protein varsigmaA and its dsRNA-binding activity. Virology 266: 33-41.
29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
30. Poh TY, Pease J, Young JR, Bumstead N, Kaiser P (2008) Re-evaluation of chicken CXCR1 determines the true gene structure: CXCLi1 (K60) and CXCLi2 (CAF/interleukin-8) are ligands for this receptor. J Biol Chem 283: 16408-16415.
31. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11: 36-42.
32. Vagin A, Teplyakov A, , (1997) MOLREP: an Automated Program for Molecular Replacement. J Appl Cryst 30: 1022-1025.
33. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240-255.
34. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126-2132.
35. Laskowski RA, MacArthur MW, Moss DS, Thornton JM, , (1993) PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures. J Appl Cryst 26: 283-291.
36. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680.
37. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714-2723.
38. Bikadi Z, Demko L, Hazai E (2007) Functional and structural characterization of a protein based on analysis of its hydrogen bonding network by hydrogen bonding plot. Arch Biochem Biophys 461: 225-234.
39. Kleywegt GJ, Jones TA (1994) Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr D Biol Crystallogr 50: 178-185.
40. DeLano WL (2002) The PyMOL Molecular Graphics System DeLano Scientific, Palo Alto, CA, USA.
41. Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9: 1753-1773.
42. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, et al. (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29: 291-325.
43. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779-815.
44. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, et al. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. . J Phys Chem B 102: 3586-3616.
45. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33: W363-367.
46. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, et al. (2005) GROMACS: fast, flexible, and free. J Comput Chem 26: 1701-1718.
47. Van Gunsteren WF, Berendsen HJC (1987) Biomos BV: Nijenborgh, Groningen, The Netherlands,. Gromos-87 manual.
48. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration In: Pullman, B editor Intermolecular forces Dordrecht: Reidel Publishing Company: 331-342.
49. Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: 3684-3690.
50. Darden T, York D, Pedersen L (1993) Particle Mesh Ewald - an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98: 10089-10092.
51. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18: 1463-1472.
52. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8: 127-134.
53. Schaefer-Klein J, Givol I, Barsov EV, Whitcomb JM, VanBrocklin M, et al. (1998) The EV-O-derived cell line DF-1 supports the efficient replication of avian leukosis-sarcoma viruses and vectors. Virology 248: 305-311.
54. Mukaida N, Mahe Y, Matsushima K (1990) Cooperative interaction of nuclear factor-kappa B- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J Biol Chem 265: 21128-21133.
55. Witowski J, Thiel A, Dechend R, Dunkel K, Fouquet N, et al. (2001) Synthesis of C-X-C and C-C chemokines by human peritoneal fibroblasts: induction by macrophage-derived cytokines. . Am J Pathol 158: 1441-1450.
56. Huang JJ, Newton RC, Rutledge SJ, Horuk R, Matthew JB, et al. (1988) Characterization of murine Il-1-beta - isolation, expression, and purification. J Immunol 140: 3838-3843.
57. Hazuda D, Webb RL, Simon P, Young P (1989) Purification and characterization of human recombinant precursor interleukin 1 beta. J Biol Chem 264: 1689-1693.
58. Chrunyk BA, Evans J, Lillquist J, Young P, Wetzel R (1993) Inclusion body formation and protein stability in sequence variants of interleukin-1 beta. J Biol Chem 268: 18053-18061.
59. Yuan Z, Zhao J, Wang ZX (2003) Flexibility analysis of enzyme active sites by crystallographic temperature factors. Protein Eng 16: 109-114.
60. Veerapandian B, Gilliland GL, Raag R, Svensson AL, Masui Y, et al. (1992) Functional implications of interleukin-1 beta based on the three-dimensional structure. Proteins 12: 10-23.
61. Adamek DH, Guerrero L, Blaber M, Caspar DL (2005) Structural and energetic consequences of mutations in a solvated hydrophobic cavity. J Mol Biol 346: 307-318.
62. Schreuder H, Tardif C, Trump-Kallmeyer S, Soffientini A, Sarubbi E, et al. (1997) A new cytokine-receptor binding mode revealed by the crystal structure of the IL-1 receptor with an antagonist. Nature 386: 194-200.
63. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605-1612.
64. Stone MJ (2001) NMR relaxation studies of the role of conformational entropy in protein stability and ligand binding. Acc Chem Res 34: 379-388.
65. Vigers GP, Dripps DJ, Edwards CK, 3rd, Brandhuber BJ (2000) X-ray crystal structure of a small antagonist peptide bound to interleukin-1 receptor type 1. J Biol Chem 275: 36927-36933.
66. Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14: 51-55, 29-32.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 幽門螺旋桿菌之腺核苷二磷酸七碳糖合成酶HP0858之表現質體建構與結構模擬
2. Crystallization and characterization studies of avian reovirus nonstructural protein μNS and σNS
3. 幽門螺旋桿菌磷酸泛酸醯基乙胺腺苷轉移酶結構與功能之研究
4. I.家禽里奧病毒感染細胞之蛋白質體學分析以鑑定參與病毒感染機制之可能蛋白質 II.外源性雞細胞素白細胞介素1β促進家禽里奧病毒對宿主細胞之感染
5. 由結構與輔酶A的結合試驗比較幽門螺旋桿菌磷酸泛酸醯基乙胺腺苷轉移酶與其突變種的差異
6. 功能性上的研究幽門桿菌中正常和突變的磷酸泛酸醯基乙胺腺苷轉移酶,並比較其差異性
7. 由幽門螺旋桿菌磷酸泛酸醯基乙胺腺苷轉移酶與其突變種的正向活性試驗分析參與活化的重要胺基酸
8. Structural and reverse kinetics analysis of substrate binding to the phosphopantetheine adenylyltransferase and its mutants from Helicobacter pylori
9. I. 環形序列重組對雞之介白素-1乙型結構與功能的影響 II. 雞之介白素-1受體拮抗蛋白其結構與功能的分析
10. 從結構及正反應酵素動力學的角度去分析胃幽門螺旋桿菌中正常和突變的磷酸泛酸醯基乙胺腺苷轉移酶與受質結合的情形來做藥物設計
11. 家禽介白素-1β結構生物學特性與臨床應用及其對家禽里奧病毒感染宿主細胞之影響
12. 研究果蠅谷氨醯胺合成酶II的蛋白質結構及酵素動力學
13. Biological analysis and application of IL-1 family
14. 探討胺基末端和催化位點突變在果蠅谷氨酰胺合成酶II中的關鍵作用
15. 豬介白素-1之結構,功能,包覆性微顆粒以及作為豬生殖呼吸綜合症疫苗佐劑之應用
 
* *