帳號:guest(3.137.172.68)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃振祐
作者(外文):Huang, Jhen-Yu
論文名稱(中文):具切換式整流器前級隔離式三相變頻器系統之開發
論文名稱(外文):DEVELOPMENT OF ISOLATED THREE-PHASE INVERTER SYSTEMS WITH SWITCH-MODE RECTIFIER FRONT-ENDS
指導教授(中文):徐永珍
廖聰明
指導教授(外文):Hsu, Yung-Jane
Liaw, Chang-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電力電子產業研發碩士專班
學號:9769504
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:169
中文關鍵詞:單相變頻器三相變頻器Scott-T模組連接波型追蹤低頻隔離高頻隔離數位信號處理器切換式整流器
外文關鍵詞:single-phase inverterthree-phase inverterScott-T modular connectedwaveform trackinglow-frequency isolatedhigh-frequency isolatedDSPswitch-mode rectifier
相關次數:
  • 推薦推薦:0
  • 點閱點閱:107
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
  此論文旨在研製一單模組高頻隔離三相變頻器及一史考特T (Scott-T) 模組連接之低頻隔離三相變頻器。二者皆配備三種不同類型式之三相切換式整流器前級,藉由數位信號處理器為主之數位控制,所建變頻器具良好之輸出性能。
  首先設計建構一單相變頻器模組,以所提之電流及電壓控制架構使其具有良好及強健之輸出電壓波形追蹤特性。接著應用二組所建單相變頻器透過Scott-T變壓器接成一低頻隔離式三相變頻器,此系統僅需兩個單相變頻器模組及一組史考特變壓器。一些實測結果顯示其優良之操作性能,包括在不平衡及非線性負載下之電壓波形追控特性以及三相不平衡特性等。接著,建構高頻隔離三相變頻器,其包含一個六開關單模組三相變頻器及一LLC共振DC/DC轉換器,建立隔離直流鏈具有良好之電壓調節特性。兩種三相變頻器性能也將予以比較評估。特定言之,高頻隔離三相變頻器在非線性負載下之電壓波形失真較少。不過,由於高頻變壓器之固有限制,其額定之增大較為困難。
  最後,本論文從事三種三相切換式整流器之開發,並將其用為所建立三相變頻器之前級。此三種切換式整流器含三相單開關,三相無橋式及零電流轉移切換,具不同型式切換式整流器前級之三相變頻器系統將以一些實測結果進行其性能比較評估。
The major purposes of this thesis are to develop a single-module high-frequency isolated three-phase inverter and a Scott-T modular connected low-frequency isolated three-phase inverter. All are equipped with different types of three-phase switch-mode rectifiers, and proper digital controls using digital signal processor (DSP) are conducted to yield good inverter output performance.
First, a single-phase inverter is designed and implemented, which possesses excellent and robust output voltage waveform tracking characteristics via the proposed sophisticated current and voltage control schemes. The established single-phase inverter is then employed to form a low-frequency isolated Scott-T modular connected three-phase inverter, only two inverter modules and a Scott-T transformer bank are employed. Some measured results are provided to demonstrate its operating performances, including voltage waveforms under unbalanced and nonlinear loads, and three-phase imbalance, etc. Second, a high-frequency isolated three-phase inverter is constructed. It consists of a single-module six-switch three-phase inverter and a LLC resonant DC/DC converter to establish the isolated DC-link with well-regulated voltage. The comparative performance evaluation for these two types of three-phase inverters is conducted. Specifically speaking, the high-frequency isolated inverter possesses less output voltage waveform distortion in powering nonlinear loads. However, its rating enlargement is more difficult owing to the inherent limits of high-frequency power transformer.
Finally, the development of three types of three-phase switch-mode rectifiers (SMRs) is made, and they are utilized to serve as the front-ends of the developed inverters. These include three-phase single-switch (3P1SW) SMR, three-phase bridgeless SMR and three-phase single-switch zero-current-transition (3P1SW ZCT) SMR. The established different SMR-fed inverter systems are assessed their performances comparatively by measured results.
CHAPTER 1 INTRODUCTION

CHAPTER 2 FUNDAMENTALS OF INVERTERS
2.1 Introduction
2.2 Classifications of Inverters
2.3 Sinusoidal PWM Inverters
2.4 Current Controlled PWM Schemes
2.5 Some Practical Considerations
2.6 Some HF Isolated Single-Phase Inverters
2.7 Multi-Level Inverters
2.8 Power Quality Parameters

CHAPTER 3 ESTABLISHMENT OF DSP-BASED THREE-PHASE SWITCH-MODE RECTIFIERS
3.1 Introduction
3.2 Some Existing Three-Phase SMRs
3.3 DSP-Based Digital Control Issues
3.4 Establishment of Three-Phase Single-Switch SMR
3.4.1 Schematic and Operation
3.4.2 Design of Power Circuit

3.4.3 Design of Voltage Feedback Controller
3.4.4 Measured Results
3.5 Establishment of Three-Phase Bridgeless SMR
3.5.1 Schematic and Operation
3.5.2 Measured Results
3.6 Three-Phase Single-Switch ZCT SMR
3.6.1 Some Existing Soft-Switching SMRs
3.6.2 Schematic and Operation
3.6.3 Design of Power Circuit
3.6.4 Measured Results

CHAPTER 4 MODULAR CONNECTED SCOTT-T LF ISOLATED THREE-PHASE INVERTER
4.1 Introduction
4.2 Low-Frequency Isolated Single-Phase Inverter
4.2.1 Power Circuit
4.2.2 The Proposed Control Scheme
4.2.3 Performance Evaluation
4.3 Three-Phase Inverter Test Loads
4.4 Two-Phase to Three-Phase Voltage Transformation
4.5 LF Isolated Scott-T connected Three-Phase Inverter with 3P1SW SMR Front-End
4.6 LF Isolated Scott-T connected Three-Phase Inverter with Three-Phase Bridgeless SMR Front-End
4.7 LF Isolated Scott-T Connected Three-Phase Inverter with 3P1SW ZCT SMR Front-End
4.8 LF Isolated Scott-T Connected Three-Phase Inverter with Three-Phase Rectifier Front-End

CHAPTER 5 SINGLE-MODULE LF AND HF ISOLATED THREE- PHASE INVERTERS
5.1 Introduction
5.2 Single-Module LF Isolated Three-Phase Inverter
5.3 HF Isolated DC-link Established using LLC Resonant DC/DC Converter
5.3.1 Operation Principle of a LLC Resonant Converter
5.3.2 Governing Equations
5.3.3 Simulation Result
5.3.4 Design of System Components
5.3.5 Design of Voltage Feedback Controller
5.3.6 Measured Results
5.4 Single-Module HF Isolated Three-Phase Inverter

CHAPTER 6 CONCLUSIONS

REFERENCES
A. Inverter Basics
[1] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Massachusetts: SCI-TECH, 2001.
[2] B. K. Bose, Modern Power Electronics and AC Drive, 2nd ed. New Jersey: Prentice-Hall, 2002.
[3] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, 1st ed. New York: John Wiley & Sons, 2003.
[4] M. M. Rashid, Power Electronics: Circuit Devices and Applications, Pearson Education Taiwan Ltd., 2009.
[5] Y. Huang, F. Z. Peng, J. Wang and D. Yoo, “Survey of the power conditioning system for PV power generation,” in Proc. IEEE PESC, 2006, pp. 1-6.
[6] Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[7] G. Grandi, C. Rossi, D. Ostojic and D. Casadei, “A new multilevel conversion structure for grid-connected PV applications,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4416-4426, 2009.
[8] Y. W. Li, D. M. Vilathgamuwa and P. C. Loh, “A grid-interfacing power quality compensator for three-phase three-wire microgrid applications,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1021-1031, 2006.
[9] T. T. Ma, “Novel voltage stability constrained positive feedback anti-islanding algorithms for the inverter-based distributed generator systems,” IET Proc. Renew. Pow. Gen., vol. 4, no. 2, pp. 176-185, 2010.
[10] Z. Liang, L. Alesi, X. Zhou and A. Q. Huang, “Digital controller development for grid-tied photovoltaic inverter with model based technique,” in Proc. IEEE APEC, 2010, pp. 849-853.
B. PWM Switching Methods
[11] J. Holtz, “Pulsewidth modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
[12] M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[13] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, IEEE Press, 2003.
[14] D. Czarkowski, D. V. Chudnovsky and I. W. Selesnick, “Solving the optimal PWM problem for single-phase inverters,” IEEE Trans. Circuits Syst. I, vol. 49, no. 4, pp. 465-475, 2002.
[15] S. R. Bowes and D. Holliday, “Optimal regular-sampled PWM inverter control techniques,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1547-1559, 2007.
[16] T. Senjyu, H. Kamifurutono and K. Uezato, “Robust current control method with disturbance voltage observer for voltage source PWM inverter,” in Proc. IEEE PEDS, 1995, pp. 379-384.
[17] T. H. Chen and C. M. Liaw, “Vibration acceleration control of an inverter-fed electrodynamic shaker,” IEEE/ASME Trans. Mechatronics, vol. 4, no. 1, pp. 60-70, 1999.
[18] C. M. Liaw, W. C. Yu and T. H. Chen, “Random vibration test control of inverter-fed electrodynamic shaker,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 587-594, 2002.
[19] B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with fixed switching frequency,” IEE Proc. Elect. Power Appl., vol. 148, no. 6, pp. 503-512, 2001.
[20] K. A. Tehrani, I. Rasoanarivo, L. Barrandon, M. Hamzaoui, F. M. Sargos and M. Rafiei, “A new current control using two hysteresis modulation for a new three-level inverter,” in Proc. IEEE OPTIM, 2010, pp. 652-658.
[21] Y. Kobayashi and H. Funato, “Current control method based on hysteresis control suitable for single-phase active filter with LC output filter,” in Proc. EPEPEMC, 2008, pp. 479-484.
[22] R. Ramchand, K. Sivakumar, A. Das, C. Patel and K. Gopakumar, “Improved switching frequency variation control of hysteresis controlled voltage source inverter-fed IM drives using current error space vector,” IET Proc. Power Elect., vol. 3, no. 2, pp. 219-231, 2010.
[23] G. Alarcon, V. Cardenas, S. Ramirez, N. Visairo, C. Nunez, M. Oliver and H. Sira-Ramirez, “Nonlinear passive control with inductor current feedback for an UPS inverter,” in Proc. IEEE PESC, 2000, pp. 1414-1418.
[24] C. Rech, H. Pinherio, H. A. Grundling, H. L. Hey and J. Pinheiro, “Analysis and design of a repetitive predictive-PID controller for PWM inverters,” in Proc. IEEE PESC, 2001, vol. 2, pp. 17-21.
[25] F. Barrero, M. R. Arahal, R. Gregor, S. Toral and M. J. Duran, “One-step modulation predictive current control method for the asymmetrical dual three-phase induction machine,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1974-1983, 2009.
[26] G. Narayanan, V. T. Ranganathan, D. Zhao, H. K. Krishnamurthy and R. Ayyanar, “Space vector based hybrid PWM techniques for reduced current ripple,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1614-1627, 2008.
[27] J. Hong, J. Kim and K. Nam, “A current distortion compensation scheme for four-switch inverters,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1032-1040, 2009.
C. DC-link Ripple and Dead Time Effects
[28] J. Sakly, P. Delarue and R. Bausiere, “Rejection of undesirable effects of input DC-voltage ripple in single-phase PWM inverters,” in Proc. IET EPA, 1993, vol. 4, pp. 65-70.
[29] J. Sebasti, D. G. Lamar, M. M. Hernando, A. Rodriguez-Alonso and A. Fernandez, “Steady-state analysis and modeling of power factor correctors with appreciable voltage ripple in the output-voltage feedback loop to achieve fast transient response,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2555-2566, 2009.
[30] X. Mao, R. Ayyanar and H. K. Krishnamurthy, “Optimal variable switching frequency scheme for reducing switching loss in single-phase inverters based on time-domain ripple analysis,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 991-1001, 2009.
[31] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, 1999.
[32] A. C. Oliveira, A. M. N. Lima and C. B. Jacobina, “Varying the switching frequency to compensate the dead-time in pulse width modulated voltage source inverters,” in Proc. IEEE PSEC, 2001, pp. 244-249.
[33] K. Iimori, K. Shinohara and K. Yamamoto, “Study of dead time of PWM rectifier of voltage-source inverter without DC-link components and its operating characteristics of induction motor,” IEEE Trans. Ind. Electron., vol. 42, no. 2, pp. 518-525, 2006.
[34] A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Improved dead-time compensation for sinusoidal PWM inverters operating at high switching frequencies,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2295-2304, 2007.
[35] S. H. Hwang and J. M. Kim, “Dead time compensation method for voltage-fed PWM inverter,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 1-10, 2010.
D. Effects of Output Filter and Transformer Imbalance
[36] P. A. Dahono, A. Purwadi and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” in Proc. IEEE PEDS, 1995, vol. 2, pp. 571-576.
[37] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. ICPST, 2000, vol. 3, pp. 1659-1664.
[38] T. G. Habetler, R. Naik and T. A. Nondahl, “Design and implementation of an inverter output LC filter used for dv/dt reduction,” IEEE Trans. Power Electron., vol. 17, no. 3, pp. 327-331, 2002.
[39] H. Kim and S. K. Sul, “Analysis on output LC filters for PWM inverters,” in Proc. IEEE IPEMC, 2009, pp. 384-389.
[40] Z. Guo and F. Kurokawa, “A new hybrid current control scheme for dead time compensation of inverters with LC filter,” in Proc. IEEE EPE, 2009, pp. 1-10.
[41] J. Gao, X. Zhao, X. Yang and Z. Wang, “The research on avoiding flux imbalance in sinusoidal wave inverter,” in Proc. IEEE IPEMC, 2000, vol. 3, pp. 1122-1126.
[42] M. Li and Y. Xing, “Digital voltage regulation with flux balance control for sine wave inverters,” in Proc. IEEE APEC, 2004, vol. 3, pp. 1709-1713.
[43] H. Lavric and R. Fiser, “Flux balance assurance in output transformers of sine-wave inverters using DC autonulling control principle,” in Proc. EPEPEMC, 2006, pp. 218-221.
E. Switch-Mode Rectifiers
[44] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[45] H. Mao, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
[46] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[47] J. Yungtaek and M. M. Jovanovic, “A comparative study of single-switch three-phase high-power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp.1327-1334, 1998.
[48] N. Takeuchi, K. Matsui, I. Yamamoto, M. Hasegawa, F. Ueda and H. Mori, “A novel PFC circuit for three-phase utilizing a single switching device,” in Proc. IEEE INTELEC, 2008, pp. 1-5.
[49] J. I. Itoh and I. Ashida, “A novel three-phase PFC rectifier using a harmonic current injection method,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 715-722, 2008.
[50] D. S. L. Simonetti, J. Sebastian and J. Uceda, “Single-switch three-phase power factor preregulator under variable switching frequency and discontinuous input current,” in Proc. IEEE PESC, 1993, pp. 657-662.
[51] K. Cai and Z. Xu, “A novel control method of three-phase single-switch boost power factor corrector under variable switching frequency,” in Proc. ICPST, 2002, vol. 1, pp. 565-569.
[52] F. Barbosa, F. Canales, and F. Lee, “Passive input current ripple cancellation in three-phase discontinuous conduction mode rectifiers,” in Proc. IEEE PESC, 2001, vol. 2, pp. 1019-1024.
[53] R. Zhang and F. C. Lee, “Optimum PWM pattern for a three-phase boost DCM PFC rectifier,” in Proc. IEEE APEC, 1997, vol. 2, pp. 895-901.
[54] J. Y. Chai, Y. C. Chang and C. -M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[55] R. L. Alves and I. Barbi, “Analysis and implementation of a hybrid high-power-factor three-Phase unidirectional rectifier,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 632-640, 2009.
[56] A. Gensior, H. Sira-Ramirez, J. Rudolph and H. Guldner, “On some nonlinear current controllers for three-phase boost rectifiers,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 360-370, 2009.
[57] C. T. Pan and Y. H. Liao, “Modeling and control of circulating currents for parallel three-phase boost rectifiers with different load sharing,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2776-2785, 2008.
[58] A. R. Prasad, P. D. Ziogas and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” IEEE Trans. Power Electron., vol. 6, no. 1 , pp. 83-92, 1991.
[59] B. Tamyurek, A. Ceyhan, E. Birdane and F. Keles, “A simple DSP based control system design for a three-phase high power factor boost rectifier,” in Proc. IEEE APEC, 2008, pp. 1416-1422.
[60] Z. Z. Ye and M. M. Jovanovic, “Implementation and performance evaluation of DSP-based control for constant-frequency discontinuous-conduction-mode boost PFC front end,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 98-107, 2005.
[61] Y. Jiang, H. Mao, F. C. Lee and D. Borojevic, “Simple high performance three-phase boost rectifiers,” in Proc. IEEE PESC, 1994, vol. 2, pp. 1158-1163.
[62] A. B. Morton and I. M. Y. Mareels, “A generalized dynamical model for three-phase switch-mode converter circuits,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 994-1001, 2003.
[63] T. Jin, L. Li and K. M.Smedley, “A universal vector controller for four-quadrant three-phase power converters,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 377-390, 2007.
[64] R. Zhang, F. C. Lee and D. Boroyevich, “Four-legged three-phase PFC rectifier with fault tolerant capability,” in Proc. IEEE PESC, 2000, vol. 1, pp. 359-364.
[65] R. Ghosh and G. Narayanan, “Control of three-phase, four-wire PWM rectifier,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 96-106, 2008.
[66] B. Wang, G. Venkataramanan and A. Bendre, “Unity power factor control for three-phase three-level rectifiers without current sensors,” IEEE Trans. Ind. Appl., vol. 43, no. 5, pp. 1341-1348, 2007.
[67] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Implementation of a new linear control technique based on experimentally validated small-signal model of three-phase three-level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1666-1676, 2008.
[68] S. H. Li and C. M. Liaw, “Development of three-phase switch mode rectifier using single-phase modules,” IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 1, pp. 70-79, 2004.
[69] Y. Li and T. Takahashi, “A digitally controlled 4-kW single-phase bridgeless PFC circuit for air conditioner motor drive applications,” in Proc. IEEE IPEMC, 2006, pp. 1-5.
[70] C. Petrea and M. Lucanu, “Bridgeless power factor correction converter working at high load variations,” in Proc. IEEE ISSCS, 2007, pp. 1-4.
[71] L. Huber, Jang Yungtaek and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[72] J. Yungtaek and M. M. Jovanovic, “A bridgeless PFC boost rectifier with optimized magnetic utilization,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 85-93, 2009.
[73] D. S. Oliverira, L. Barreto, F. Antunes, M. Silva, D. L. Queiroz and A. R. Rangel, “A DCM three-phase high frequency semi-controlled rectifier feasible for power WECS based on a permanent magnet generator,” in Proc. IEEE COBEP, 2009, pp. 1193-1199.
F. Soft Switching SMR
[74] K. Wang, F. C. Lee, G. Hua and D. Borojevic, “A comparative study of switching losses of IGBTs under hard-switching, zero-voltage-switching and zero-current-switching,” in Proc. IEEE PESC, 1994, pp. 1196-1204.
[75] G. Hua, C. S. Leu, Y. Jiang and F. C. Lee, “Novel zero-voltage-transition PWM converters,” IEEE Trans. Power Electron., vol. 9, no. 2, pp. 213-219, 1994.
[76] G. Hua, E. X. Yang, Y. Jiang and F. C. Lee, “Novel zero-current-transition PWM converters,” IEEE Trans. Power Electron., vol. 9, no. 6, pp. 601-606, 1994.
[77] S. Gataric, D. Boroyevich and F. C. Lee, “Soft-switched single-switch three-phase rectifier with power factor correction,” in Proc. IEEE APEC, 1994, pp. 738-744.
[78] P. Das and G. Moschopoulos, “A comparative study of zero-current transition PWM converters,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1319-1328, 2007.
[79] S. Bassan, G. Moschopoulos and R. Fadaienedjad, “A novel soft-switched three-phase single-switch rectifier,” in Proc. IEEE CCECE, 2007, pp. 852-855.
[80] H. Y. Tsai, T. H. Hsia and D. Chen, “A novel soft-switching bridgeless power factor correction circuit,” in Proc. IEEE EPE, 2007, pp. 1-10.
[81] M. Mahdavi and H. Farzanehfard, “Zero-current-transition bridgeless PFC without extra voltage and current stress,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2540-2547, 2009.
G. Multi-level Inverters
[82] N. P. Schibli, T. Nguyen and A. C. Rufer, “A three-phase multilevel converter for high-power induction motors,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 978-986, 1998.
[83] J. Rodriguez, J. S. Lai and F. Z. Peng, “Multilevel inverters: a survey of topologies, controls and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724-738, 2002.
[84] K. Fujii, U. Schwarzer, W. Rik and D. Doncker, “Comparison of hard-switched multi-level inverter topologies for STATCOM by loss-implemented simulation and cost estimation,” in Proc. IEEE PESC, 2005, pp. 340-346.
[85] G. S. Perantzakis, F. H. Xepapas and S. N. Manias, “A novel four-level voltage source inverter-influence of switching strategies on the distribution of power losses,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 149-159, 2007.
[86] D. Casadei, G. Grandi, A. Lega and C. Rossi, “Multilevel operation and input power balancing for a dual two-level inverter with insulated DC sources,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1815-1824, 2008.
[87] Z. Du, B. Ozpineci, L. M. Tolbert and J. N. Chiasson, “DC-AC cascaded H-bridge multilevel boost inverter with no inductors for electric/hybrid electric vehicle applications,” IEEE Trans. Ind. Electron., vol. 45, no. 3, pp. 963-970, 2009.
[88] S. G. Song, D. K. Kim, H. K. Nam and S. J. Park, “Common arm three-phase transformer multi-level inverter,” in Proc. IEEE INTELEC, 2009, pp. 1-5.
[89] Y. Ding, P. C. Loh, K. K. Tan, P. Wang and F. Gao, “Reliability evaluation of three-level inverters,” in Proc. IEEE APEC, 2010, pp. 1555-1560.
H. Three-Phase Single-Module Inverters
[90] C. Liu, J. Lai, F. C. Lee, D. Chen and R. Zhang, “Common-mode components comparison for different SVM schemes in three-phase four-legged converter,” in Proc. IEEE IPEMC, 2000, pp. 633-638.
[91] N. Patin, E. Monmasson and J. P. Louis, “Fault tolerant control using a hybrid predictive strategy applied to a current controlled four-legged three-phase converter,” in Proc. IEEE IET, 2007, pp. 1-6.
[92] T. Kominami and Y. Fujimoto, “A novel nine-switch inverter for independent control of two three-phase loads,” in Proc. IEEE IAS, 2007, pp. 2346-2350.
[93] F. Botteron and H. Pinheiro, “A three-phase UPS that complies with the standard IEC 62040-3,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2120-2136, 2007.
[94] Y. Chen and K. Smedley, “Three-phase boost-type grid-connected inverter,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2301-2309, 2008.
[95] B. Koushki, H. Khalilinia, J. Ghaisari and M. S. Nejad, “A new three-phase boost inverter-topology and controller,” in Proc. IEEE CCECE, 2008, pp. 757-760.
[96] B. Koushki and J. Ghaisari “A voltage reference design for three-phase boost inverter,” in Proc. IEEE EURCON, 2009, pp. 650-654.

I. Modular Connected Three-Phase Inverters
[97] R. J. Kakalec, “A comparison of three phase Scott-T and ferroresonant transformers,” in Proc. IEEE EEIC, 1995, pp. 619-623.
[98] M. Milanovic, D. Dolinar and A. Ravnjak, “DC to three-phase inverter based on two-phase to three-phase transformation,” in Proc. IEEE ISIE, 2002, pp. 784-788.
[99] W. S. Chu and J. C. Gu, “A new hybrid SVC scheme with Scott transformer for balance improvement,” in Proc. IEEE RRCON, 2006, pp. 217-224.
[100] A. A. Badin and I. Barbi, “Unity power factor isolated three-phase rectifier with split DC-bus based on the Scott transformer,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1278-1287, 2008.
[101] H. E. Mazin and W. Xu, “An investigation on the effectiveness of Scott transformer on harmonic reduction,” in Proc. IEEE PES, 2008, pp. 1-4.
J. High Frequency Isolated DC-Link
[102] A. I. Pressman, Switching Power Supply Design, 2nd ed. New York: McGraw-Hill, 1999.
[103] C. M. Liaw and T. H. Chen, “A soft-switching mode rectifier with power factor correction and high frequency transformer link,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 644-654, 2000.
[104] M. Z. Ramli, Z. Salam, L. S. Toh and C. L. Nge, “A bidirectional inverter with high frequency isolated transformer,” in Proc. IEEE PECon, 2003, pp. 71-75.
[105] P. K. Jain, K. Wen, H. Soin and Y. Xi, “Analysis and design considerations of a load and line independent zero voltage switching full bridge DC/DC converter topology,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 649-657, 2002.
[106] G. Koo, G. Moon and M. Youn, “New zero-voltage-switching phase-shift full-bridge converter with low conduction losses,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 228-235, 2005.
[107] O. Deblecker, A. Moretti and F. Vallee, “Comparative study of soft-switched isolated DC-DC converters for auxiliary railway supply,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2218-2229, 2008.
[108] M. H. Kheraluwala, D. W. Novotny and D. M. Divan, “Design considerations for high power high frequency transformers,” in Proc. IEEE PESC, 1990, pp. 734-742.
[109] R. Petkov, “Optimum design of a high-power, high-frequency transformer,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 33-42, 1996.
[110] W. G. Hurley, W. H. Wolfle and J. G. Breslin, “Optimized transformer design: inclusive of high-frequency effects,” IEEE Trans. Power Electron., vol. 13, pp. 651-659, 1998.
[111] T. Jimichi, H. Fujita and H. Akagi, “A dynamic voltage restorer equipped with a high-frequency isolated DC-DC converter,” in Proc. IEEE ECCE, 2009, pp. 1459-1465.
[112] S. Inoue and H. Akagi, “A bidirectional isolated DC/DC converter as a core circuit of the next-generation medium-voltage power conversion system,” IEEE Trans. Power. Electron., vol. 22, no. 2, pp. 535-542, 2007.
[113] X. Li and A. K. S. Bhat, “AC equivalent circuit analysis for high-frequency isolated dual-bridge series resonant DC/DC converter,” in Proc. IEEE PESC, 2008, pp. 238-244.
[114] Z. Wang and H. Li, “Unified modulation for three-phase current-fed bidirectional DC-DC converter under varied input voltage,” in Proc. IEEE APEC, 2010, pp. 807-812.
[115] X. Li and A. K. S. Bhat, “Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC converter,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 850-862, 2010.
K. Others
[116] F. Nekoogar and G. Moriarty, Digital Control Using Digital Signal Processing, Prentice Hall PTR: New Jersey, 1999.
[117] F. L. Luo, H. Ye and M. H. Rashid, Digital Power Electronics and Applications, Academic Press Inc: London Ltd, 2005.
[118] “Digital signal controller TMS320F2812 datasheet,” Available: http://focus.ti. com/lit/ds/symlink /tms320f2812.pdf
[119] ‘‘C28x IQmath Library-A Virtual Floating Point Engine,’’ Available: http://focus.ti. com/lit/sw /sprc990/sprc990.pdf
[120] P. Kulkarni, “Assessing power quality impacts and solutions for the California food processing industry,” EPRI, California, Tech, Rep, 100-98-001, EPRI Project #37, 2005.
[121] R. C. Dugan, M. F. McGranaghan, S. Santoso and H. W. Beaty, Electrical Power Systems Quality, 2nd ed., McGraw-Hill, 2003.
[122] A. Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Trans. Power Del., vol. 16, no. 8, pp. 782-790, 2001.
[123] Y. C. Chang and C. M. Liaw, “Design and control for a charge-regulated flyback switch mode rectifier,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 59-74, 2009.
[124] “Half-bridge LLC resonant converter design using FSFR-series Fairchild Power Switch,” Available: http://www.fairchildsemi.com/an/AN/AN-4151.pdf
[125] AMOTECH Cut-cores for High Power Applications Data Manual, Advance Material on Technology Co., Korea, 2005.
[126] Advance Powder Core for High Current PFC/Out Put Choke Application Data Manual, Amosense Co., Korea, 2005.
[127] C. H. Yeh, “DSP-based inverter systems with three-phase switch-mode rectifier front-end,” Master Thesis, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2009.
[128] Y. B. Chen, “Development of digital controlled modular inverters with switching mode rectifier front-end,” Master Thesis, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2007.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *