帳號:guest(54.152.77.92)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱耘漢
作者(外文):Chu, Yun-Han
論文名稱(中文):黃光波段之磷化鋁鎵銦之漸變折射率分開侷限應力型多重量子井雷射二極體之研製
論文名稱(外文):Yellow Light AlGaInP Graded Index Separate Confinement Strained Multiple Quantum Well Laser Diodes
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:9763559
出版年(民國):98
畢業學年度:98
語文別:英文
論文頁數:68
中文關鍵詞:磷化鋁鎵銦
相關次數:
  • 推薦推薦:0
  • 點閱點閱:140
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
雷射元件一直在工業界有著舉足輕重的角色,不論是在切割、蝕刻等製程方面,更是在通訊以及醫療美容這類的應用方面有著一定的發展。在黃光雷射波段的使用上,在醫療美容的領域有著皮膚除皺的功效,為時下皮膚醫學界不可或缺的技術。另外,在心血管疾病治療部份,黃光雷射波段主要的治療標的是血管內紅血球裡的血紅素,由於血紅素可以強烈的吸收其雷射的波長,使得血管內的溫度劇烈升高,造成血管壁燒傷破壞,破壞的血管壁細胞經身體吸收消失,即可達到治療的目的。
然而,相較於現今黃光雷射常用以染料為介質之雷射(染料雷射,Dye-laser),半導體雷射二極體有著更大的發光功率,這對於除了應用於醫療之外,在光纖通訊系統上顯得更為重要。因此,本論文中特地採用磷化鋁鎵銦(AlGaInP)作為主動層,並且使用應力多重量子井(strained multiple quantum wells)以及電流阻隔式結構的組成方式,以提昇其發光功率,達到我們的目標。
論文中我們將會針對黃光雷射二極體的特性作分析,從製程前模擬作業,到後續的製程參數,最後進行不同的溫度,共振腔體長度的量測與比較。
Contents

摘 要
ABSTRACT
誌 謝
CONTENTS
FIGURE CAPTIONS
TABLE CAPTIONS
Chapter 1: Introduction 1
1-1 General overview of semiconductor laser 1
1-2 Characteristic of AlGaInP 4
1-3 Applications and advantages of yellow-green light emitting devices 8
Chapter 2: Theory 11
2-1 Basic theory of semi-conductor laser 11
2-2 Separate confinement heterostructure 13
2-2-1 Heterostructure 13
2-2-2 Separate confinement heterostructure 15
2-3 Strained multiple quantum wells 17
Chapter 3: Structure design and epitaxial wafer performance 21
3-1 Substrate 21
3-2 Active region 24
3-3 Simulation and result 28
3-4 Epitaxial wafer performance 30
3-4-1 Cross-section the epitaxial wafer 30
3-4-2 X-Ray diffractometer measurement 32
3-4-3 Photoluminescence measurement 34
Chapter 4: Fabrication of ridge waveguide laser 39
4-1 Ridge waveguide definition 39
4-2 Process of self-align 43
4-3 Process of metallization 46
Chapter 5: Performances and discussions 49
5-1 Light-current measurement 50
5-2 Voltage-current measurement 53
5-3 Spectrum 55 Chapter 6: Conclusions and future work 58
6-1 Conclusions 58
6-2 Future work 59
References 60
References 60
[1] 中正理工學院電子工程研究所碩士論文
波長1.55微米電流阻隔式光柵砷化鋁鎵銦應力多重量子井分佈回授式雷射之研製 余福敏 (1999).
[2] I. Hino, A. Gomyo, K. Kobayashi, T. Suzuki, and K. Nishida, “Room-temperature pulsed operation of AlGaInP/GaInP/AlGaInP double heterostructure visible light laser diodes grown by metal-organic chemical vapor deposition, ”Applied Physics Letters, Vol. 43, pp. 987-989, 1983.
[3] H. Asahi, Y. Kawamura, and H. Nagai, “Molecular beam epitaxial growth of InGaAlP visible laser diodes operating at 0.66-0.68 um at room temperature,” Journal of Applied Physics, Vol. 54, pp. 6958-6964, 1983.
[4] D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, and G. H. S. Jun, “0.66 mm room-temperature operation of InGaAlP DH laser diodes grown by MBE,” Electronics Letters, Vol. 19, pp. 163-164, 1983.
[5] M. Ikeda, Y. Mori, M. Takiguchi, K. Kaneko, and N. Watanabe, “Cw operation of an AlGaInP double heterostructure laser diode at 77K grown by atmospheric metal-organic chemical vapor deposition,” Applied Physics Letters, Vol. 45, pp. 661-663, 1984.
[6] M. Ikeda, Y. Mori, H. Sato, K. Kaneko, and N. Watanabe, “Room-temperature continuous-wave operation of an AlGaInP double heterostructure laser grown by atmospheric pressure metal-organic chemical vapor deposition,” Applied Physics Letters, Vol. 47, pp. 1027-1028, 1985.
[7] K. Kobayashi, S. Kawata, A. Gomyo, I. Hino, and T. Suzuki, “Room-temperature cw operation of AlGaInP double-heterostructure visible lasers,” Electronics Letters, Vol. 21, pp. 931-932, 1985.
[8] M. Ishikawa, Y. Ohba, H. Sugawara, M. Yamamoto, and T. Nakanisi, “Room-temperature cw operation of InGaP/InGaAlP visible light laser diodes on GaAs substrates grown by metal-organic chemical vapor deposition,” Applied Physics Letters, Vol. 48, pp. 207-208, 1986.
[9] 國立彰化師範大學物理研究所碩士論文
黃綠光磷化鋁鎵銦發光二極體與面射型半導體雷射光學特性之研究 黃雅蓮 (2001).
[10] M. Ikeda, M. Honda, Y. Mori, K. Kaneko, and N. Watanabe, “Yellow-emitting AlGaInP double heterostructure laser diode at 77 K grown by atmospheric metal-organic chemical vapor deposition,” Applied Physics Letters, Vol. 45, pp. 964-966, 1984.
[11] I. Hino, S. Kawata, A. Gomyo, K. Kobayashi, and T. Suzuki, “Continuous wave operation (77 K) of yellow (583.6 nm) emitting AlGaInP double heterostructure laser diodes,” Applied Physics Letters, Vol. 48, pp. 557-558, 1986.
[12] K. Kobayashi, S. Kawata, A. Gomyo, I. Hino, and T. Suzuki, “661.7nm room-temperature cw operation of AlGaInP double-heterostructure lasers with aluminum-containing quaternary active layer,” Electronics Letters, Vol. 21, pp. 1162-1163, 1985.
[13] S. Kawata, K. Kobayashi, A. Gomyo, I. Hino, and T. Suzuki, “621nm cw operation (00C) of AlGaInP visible semiconductor lasers,” Electronics Letters, Vol. 22, pp. 1265-1266, 1986.
[14] S. Kawata, H. Fujii, K. Kobayashi, A. Gomyo, I. Hino, T. Suzuki “Room-temperature continuous-wave operation of a 640nm AlGaInP visible-light semiconductor laser,” Electronics Letters, Vol. 23, pp. 1327-1328, 1987.
[15] M. Ishikawa, H. Shiozawa, Y. Tsuburai, and Y. Uematsu, “Short-Wavelength (638nm) room-temperature cw operation of InGaAlP laser diodes with quaternary active layer,” Electronics Letters, Vol. 26, pp. 211-213, 1990.
[16] K. Itaya, M. Ishikawa, and Y. Uematsu, “636nm room temperature cw operation by heterobarrier blocking structure InGaAlP laser diodes,” Electronics Letters, Vol. 26, pp. 839-840, 1990.
[17] M. Ikeda, A. Toda, K. Nakano, Y. Mori, and N. Watanabe, “Room-temperature continuous-wave operation of a GaInP/AlGaInP multi-quantum well laser grown by metalorganic chemical vapor deposition,” Applied Physics Letters, Vol. 50, pp. 1033-1034, 1987.
[18] J. M. Dallesasse, D. W. Nam, D. G. Deppe, and N. Holonyak, Jr., “Short-wavelength (<6400 Å ) room-temperature continuous operation of p-n In0.5(AlxGa1-x)0.5P quantum well lasers,” Applied Physics Letters, Vol. 53, pp. 1826-1828, 1988.
[19] S. Kawata, K. Kobayashi, H. Fujii, I. Hino, A. Gomyo, H. Hotta, and T. Suzuki, “Room-temperature, continuous-wave operation formode-stabilised AlGaInP visible-light semiconductor laser with a multi-quantum-well active layer,” Electronics Letters, Vol. 24, pp. 1489-1490, 1988.
[20] M. Ikeda, E. Morita, A. Toda, T. Yamamoto, and K. Kaneko, “GaInP/AlGaInP double-heterostructure laser grown on a (111)B-orienten GaAs substrate by metal-organic chemical vapor deposition,” Electronics Letters, Vol. 24, pp. 1094-1095, 1988.
[21] T. Tanaka, S. Minagawa, T. Kawano, and T. Kajimura, “Lasing wavelengths of index-guided AlGaInP semiconductor lasers as functions of off-angle from (100) plane of GaAs substrate,” Electronics Letters, Vol. 25, pp. 905-907, 1989.
[22] S. Minagawa, T. tanaka, and M. Kondow, “Room-temperature continuous-wave operation of short-wavelength GaInP/AlGaInP laser grown on (511)A GaAs substrate by metal-organic vapor phase epitaxy,” Electronics Letters, Vol. 25, pp. 925-926, 1989.
[23] H. Hamada, K. Tominaga, M. Shono, S. Honda, K. Yodoshi, and T. Yamaguchi, “Room-temperature cw operation of 610nm band AlGaInP strained multi-quantum well laser diodes with multi-quantum barrier,” Electronics Letters, Vol. 28, pp. 1834-1836, 1992.
[24] Y. Ueno, K. Endo, H. Fujii, K. Kobayashi, K. Hara, and T. Yuasa, “Continuous-wave high-power (75mW) operation of a transverse-mode stabilized window-structure 680nm AlGaInP visible laser diode,” Electronics Letters, Vol. 26, pp. 1726-1728, 1990.
[25] H. Fujii, K. Kobayashi, S. Kawata, A. Gomyo, I. Hino, H. Hotta, and T. Suzuki, “High-power operation of a transverse-mode stabilized AlGaInP visible light (lL = 683nm) semiconductor laser,” Electronics Letters, Vol. 23, pp. 938-939, 1987.
[26] A. Gomyo, T. Suzuki, K. Kobayashi, S. Kawata, and I. Hino, “Evidence for the existence of an ordered state in Ga0.5In0.5P grown by metalorganic vapor phase epitaxy and its relation to band-gap energy,” Applied Physics Letters, Vol. 50, pp. 673-675, 1987.
[27] K. Itaya, Y. Watanabe, M. Ishikawa, G. Hatakoshi, and Y. Uematsu, “High-power operation of heterobarrier blocking structure InGaAlP visible light laser diodes,” Applied Physics Letters, Vol. 56, pp. 1718-1719, 1990.
[28] K. Itaya, G. Hatakoshi, Y. Watanabe, M. Ishikawa, and Y. Uematsu, “High-power cw operation of broad area InGaAlP visible light laser diodes,” Electronics Letters, Vol. 26, pp. 214-215, 1990.
[29] K. Nakano, M. Ikeda, A. Toda, and C. Kojima, “Very low threshold current density of a GaInP/AlGaInP double-hererostructure laser grown by MOCVD,” Electronics Letters, Vol. 23, pp. 894-895, 1987.
[30] I. Nomura, K. Kishino, A. Kikuchi, and Y. Kaneko, “600-nm-range GaInP/AlInP strained quantum well lasers grown by gas source molecular beam epitaxy,” Japanese Journal of Applied Physics, Vol. 33, pp. 804-810, 1994.
[31] H. D. Summers, and P. Blood, “Strain effects in (AlyGa1-y)xIn1-xP lasers operating at fixed threshold gain,” Electronics Letters, Vol. 30, pp. 236-238, 1994.
[32] H. Shiozawa, H. Okuda, M. Ishikawa, G.-I. Hatakoshi, and Y. Uematsu, “High-temperature cw operation of visible light-emitting GaInP/AlGaInP inner stripe laser diodes,” Electronics Letters, Vol. 24, pp. 877-879, 1988.
[33] H. Hamada, R. Hiroyama, S. Honda, M. Shono, K. Yodoshi, and T. Yamaguchi, “AlGaInP strained multiple-quantum-well visible laser diodes (lL < 630 nm band) with a multi-quantum barrier grown on misoriented substrates,” IEEE Journal of Quantum Electronics, Vol. 29, pp. 1844-1850, 1993.
[34] K. Itaya, M. Ishikawa, H. Okuda, Y. Watanabe, K. Nitta, H. Shiozawa, and Y. Uematsu, “Effect of facet coating on the InGaAlP visible light laser diodes,” Applied Physics Letters, Vol. 53, pp. 1363-1365, 1988.
[35] M. Ishikawa, H. Okuda, K. Itaya, H. Shiozawa, and Y. Uematsu, “Long-term reliability tests for InGaAlP visible laser diodes,” Japanese Journal of Applied Physics, Vol. 28, pp. 1615-1621, 1989.
[36] H. Okuda, M. Ishikawa, H. Shiozawa, Y. Watanabe, K. Itaya, K. Nitta, G.-I. Hatakoshi, Y. Kokubun, and Y. Uematsu, “Highly reliable InGaP/InGaAlP visible light emitting inner stripe lasers with 667nm lasing wavelength,” IEEE Journal of Quantum Electronics, Vol. 25, pp. 1477-1482, 1989.
[37] A. Gomyo, K. Kobayashi, S. Kawata, I. Hino, T. Suzuki,“Aging characteristics of AlGaInP/GaInP visible-light lasers (lL = 678 nm),” Electronics Letters, Vol. 23, pp. 85, 1988.
[38] M. Ikeda, H. Sato, T. Ohata, K. Nakano, A. Toda, O. Kumagai, and C. Kojima, “680-nm band GaInP/AlGaInP tapered stripe laser,” Applied Physics Letters, Vol. 51, pp. 1572-1573, 1987.
[39] T. Kaino, M. Fujiki, and S. Nara, “Low-loss polystyrene core-optical fibers,” Journal of Applied Physics, Vol. 52, pp. 7061-7063, 1981.
[40] T. Kaino, K. Jinguji, and S. Nara, “Low loss poly(methyl methacrylate-d8) core optical fibers,” Applied Physics Letters, Vol. 42, pp. 567-569, 1983.
[41] T. Kaino, K. Jinguji, and S. Nara, “Low loss poly(methyl methacrylate-d5) core optical fibers,” Applied Physics Letters, Vol. 41, pp. 802-804, 1982.
[42] C.I.E. web site: www.cie.co.at/cie/
[43] Eugene Hecht, Optics, 3nd ed., Addison-Wesley, Massachusetts, 76 USA, 1998
[44] Weng W. Chow, Stephan W. Koch. Semiconductor-laser fundamentals: physics of gain materials, Springer.
[45] Shun Lien Chuang, “Efficient band-structure calculations of strained quantum wells”, Physical Review B, Vol. 43, No. 42, p.p. 9649-9661, 1991
[46] R. P. Schneider, Jr., R. P. Bryan, and J. A. Lott, “Visible (657 nm) lnGaP/lnAIGaP strained quantum well vertical-cavity surface-emitting laser”, Applied Physics Letters, Vol. 60, No.7, pp. 1830-1832, 1992.
[47] Peter Y. Yu, and Manuel Cardona, Fundamentals of semiconductors: physics and materials properties, Springer-Verlag, Berlin, Germany, 1996.
[48] B. G. Streetman, Solid State Electronic Devices, 4nd ed., Prentice-Hall, USA, 1995.
[49] G. B. Stringfellow, and M. George Craford, High Brightness Light Emitting Diodes: Semiconductors and Semimetals Volume 48, Academic Press, San Diego, California, USA, 1997.
[50] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., John Wiley, New York, 1981.
[51] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors”, Physica, Vol. 34, p.p. 149-154, 1967.
[52] 盧廷昌, 王興宗, “半導體雷射導論”, 1st ed., 五南圖書出版公司, 2008.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *