帳號:guest(3.15.18.66)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃信豪
作者(外文):Huang, Shin-Hao
論文名稱(中文):整合基因轉錄調控,蛋白質交互作用與細胞功能性之白色念珠菌感染宿主組織的細胞網路
論文名稱(外文):Cellular network of infectious Candida albicans on host tissues by integrating transcription regulation, protein interaction and cellular functionality
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:9761620
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:48
中文關鍵詞:細胞網路白色念珠菌宿主-病原菌交互作用表皮-真菌交互作用之機制
外文關鍵詞:cellular networkCandida albicanshost-pathogen interactionepithelia-fungus interaction mechanism
相關次數:
  • 推薦推薦:0
  • 點閱點閱:305
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
宿主與病原菌的交互作用與微生物所引起的感染是有高度相關的。研究宿主-病原菌的交互作用對於微生物學家、免疫學家以及其他的研究者是一個很重要的議題。白色念珠菌是一種相當常見的病原菌,它經常會在人體的表皮或是黏膜組織上與人類共生。另外,白色念珠菌會依據環境的情況而形成不同的形態。一般來說,白色念珠菌的菌絲型態所引起的致病性是最廣為研究的。
在這篇研究中,我們將集中在宿主組織被白色念珠菌感染情況下的細胞網路建構。利用模擬基因轉錄調控/蛋白質交互作用的動態方程與基因功能註解,一個整合性細胞網路結合了基因轉錄調控、蛋白質交互作用與細胞功能性。這個整合性細胞網路可以讓我們更了解白色念珠菌與宿主細胞發生作用時的一些生物機制。檢視這個網路的結構,我們在白色念珠菌感染宿主的過程發現了許多與重要的hub負責維持網路中的各個不同層面的元件通信,另外也發現許多與菌絲生長高度相關的信號傳遞路徑。最後再將對外界刺激產生反應的基因利用本身的功能做出適當的分類,以了解白色念珠菌在與宿主的作用的情況下會產生哪些相對應的反應來適應外界的刺激。
本篇研究提出了一個由上游信號傳遞路徑與下游基因調控網路整合而成的細胞網路,提供生物學家一個較完整的藍圖來研究白色念珠菌致病的機制。了解病原菌的生理機制對於藥物的研發與治療微生物疾病的策略運用是相當重要的,另一方面也能提供生物學家在研究宿主-病原菌相關研究上重要的參考。
The interaction between host and pathogen is highly connective with microbial infection. To investigate the host-pathogen interaction is an important topic for microbiologists, immunologists and other researchers. Candida albicans is the most prevalent opportunistic fungal pathogen as a commensal on the human skin and in mucous membranes. C. albicans can exist as in a variety of morphological forms.
In this study, we focus on constructing cellular network in relation to morphogenesis and virulence of infectious C. albicans on the host tissue. Based on the coupling gene regulation/protein interaction dynamic equation and functional gene annotation, an integrated cellular network is constructed to combine signal transduction pathway and gene regulatory network with cellular functionality of infectious C. albicans via database mining, time profile microarray and functional classification. The integrated cellular network provides insight into infection mechanisms of gene regulation and protein-protein interaction as well as cellular functions of C. albicans, during its interaction with the host cell. Fundamental understanding of such infection mechanisms is essential to the drug target development for sustainable prevention and control strategies for microbial infection and can further support all other research in host-pathogen interaction.
1 Introduction 1
2 Materials and Methods 7
2.1 Data selection and preprocessing 7
2.2 Candidate network construction via database mining 8
2.3 Dynamic model of integrated cellular network 9
2.4 Network parameter identification via time profile microarray data 13
2.6 Combination of gene regulatory network with signal transduction pathway 16
2.7 Analysis of Cellular functionality of downstream responsive genes 16
3 Results 17
3.1 Construction of integrated cellular network 17
3.2 The topology and highly connected hubs of integrated cellular network 20
3.3 Inspection of morphological switch-related signal transduction pathway 23
3.4 Cellular functionality classification of downstream responsive genes 27
4 Discussion 31
5 Conclusion 34
Bibliography 36
[1] H. Kitano, Foundations of systems biology. Cambridge, Mass.: MIT Press, 2001.
[2] A. R. Joyce and B. O. Palsson, "The model organism as a system: integrating 'omics' data sets," Nat Rev Mol Cell Biol, vol. 7, pp. 198-210, Mar 2006.
[3] H. J. Lo, et al., "Nonfilamentous C. albicans mutants are avirulent," Cell, vol. 90, pp. 939-49, Sep 5 1997.
[4] S. D. Kobayashi and J. E. Cutler, "Candida albicans hyphal formation and virulence: is there a clearly defined role?," Trends Microbiol, vol. 6, pp. 92-4, Mar 1998.
[5] R. A. Calderone and W. A. Fonzi, "Virulence factors of Candida albicans," Trends Microbiol, vol. 9, pp. 327-35, Jul 2001.
[6] J. E. Cutler, "Putative virulence factors of Candida albicans," Annu Rev Microbiol, vol. 45, pp. 187-218, 1991.
[7] F. Navarro-Garcia, et al., "Virulence genes in the pathogenic yeast Candida albicans," FEMS Microbiol Rev, vol. 25, pp. 245-68, Apr 2001.
[8] M. A. Pfaller and D. J. Diekema, "Epidemiology of invasive candidiasis: a persistent public health problem," Clin Microbiol Rev, vol. 20, pp. 133-63, Jan 2007.
[9] E. Leberer, et al., "Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p," Curr Biol, vol. 7, pp. 539-46, Aug 1 1997.
[10] N. K. Dhillon, et al., "Signaling through protein kinases and transcriptional regulators in Candida albicans," Crit Rev Microbiol, vol. 29, pp. 259-75, 2003.
[11] M. Whiteway and C. Bachewich, "Morphogenesis in Candida albicans," Annu Rev Microbiol, vol. 61, pp. 529-53, 2007.
[12] A. Singh, et al., "cAMP regulates vegetative growth and cell cycle in Candida albicans," Mol Cell Biochem, vol. 304, pp. 331-41, Oct 2007.
[13] C. R. C. Rocha, et al., "Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans," Molecular Biology of the Cell, vol. 12, pp. 3631-3643, Nov 2001.
[14] C. Csank, et al., "Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis," Infect Immun, vol. 66, pp. 2713-21, Jun 1998.
[15] B. R. Braun, et al., "A human-curated annotation of the Candida albicans genome," PLoS Genet, vol. 1, pp. 36-57, Jul 2005.
[16] T. Jones, et al., "The diploid genome sequence of Candida albicans," Proc Natl Acad Sci U S A, vol. 101, pp. 7329-34, May 11 2004.
[17] Y. C. Wang and B. S. Chen, "Integrated cellular network of transcription regulations and protein-protein interactions," BMC Syst Biol, vol. 4, p. 20, 2010.
[18] K. Zakikhany, et al., "In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination," Cell Microbiol, vol. 9, pp. 2938-54, Dec 2007.
[19] M. C. Teixeira, et al., "The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae," Nucleic Acids Res, vol. 34, pp. D446-51, Jan 1 2006.
[20] M. B. Arnaud, et al., "Sequence resources at the Candida Genome Database," Nucleic Acids Res, vol. 35, pp. D452-6, Jan 2007.
[21] M. Ashburner, et al., "Gene ontology: tool for the unification of biology. The Gene Ontology Consortium," Nat Genet, vol. 25, pp. 25-9, May 2000.
[22] R. Johansson, System modeling and identification. Englewood Cliffs, NJ: Prentice Hall, 1993.
[23] Y. C. Wang, et al., "Global screening of potential Candida albicans biofilm-related transcription factors via network comparison," BMC Bioinformatics, vol. 11, p. 53, Jan 26 2010.
[24] M. Schaller, et al., "Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia," Nat Protoc, vol. 1, pp. 2767-73, 2006.
[25] Y. H. Chang, et al., "Identification of transcription factor cooperativity via stochastic system model," Bioinformatics, vol. 22, pp. 2276-82, Sep 15 2006.
[26] U. Alon, An introduction to systems biology : design principles of biological circuits. Boca Raton, FL: Chapman & Hall/CRC, 2007.
[27] W. S. Wu, et al., "Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data," BMC Bioinformatics, vol. 8, p. 188, 2007.
[28] K. C. Chen, et al., "A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae," Bioinformatics, vol. 21, pp. 2883-90, Jun 15 2005.
[29] H. C. Chen, et al., "Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle," Bioinformatics, vol. 20, pp. 1914-27, Aug 12 2004.
[30] T. F. Coleman and L. A. Hulbert, "A Direct Active Set Algorithm for Large Sparse Quadratic Programs with Simple Bounds," Mathematical Programming, vol. 45, pp. 373-406, Dec 1989.
[31] H. Akaike, "New Look at Statistical-Model Identification," Ieee Transactions on Automatic Control, vol. Ac19, pp. 716-723, 1974.
[32] C. T. Harbison, et al., "Transcriptional regulatory code of a eukaryotic genome," Nature, vol. 431, pp. 99-104, Sep 2 2004.
[33] A. L. Barabasi and Z. N. Oltvai, "Network biology: understanding the cell's functional organization," Nat Rev Genet, vol. 5, pp. 101-13, Feb 2004.
[34] H. Jeong, et al., "Lethality and centrality in protein networks," Nature, vol. 411, pp. 41-2, May 3 2001.
[35] B. S. Chen, et al., "A systems biology approach to construct the gene regulatory network of systemic inflammation via microarray and databases mining," BMC Med Genomics, vol. 1, p. 46, 2008.
[36] D. Davis, "Adaptation to environmental pH in Candida albicans and its relation to pathogenesis," Curr Genet, vol. 44, pp. 1-7, Oct 2003.
[37] S. M. Saporito-Irwin, et al., "PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis," Mol Cell Biol, vol. 15, pp. 601-13, Feb 1995.
[38] H. U. Mosch and G. R. Fink, "Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae," Genetics, vol. 145, pp. 671-84, Mar 1997.
[39] K. J. Barwell, et al., "Relationship of DFG16 to the Rim101p pH response pathway in Saccharomyces cerevisiae and Candida albicans," Eukaryot Cell, vol. 4, pp. 890-9, May 2005.
[40] P. Jorgensen, et al., "A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size," Genes Dev, vol. 18, pp. 2491-505, Oct 15 2004.
[41] I. Fingerman, et al., "Sfp1 plays a key role in yeast ribosome biogenesis," Eukaryot Cell, vol. 2, pp. 1061-8, Oct 2003.
[42] D. Hernandez-Verdun and P. Roussel, "Regulators of nucleolar functions," Prog Cell Cycle Res, vol. 5, pp. 301-8, 2003.
[43] Y. M. Xie and A. Varshavsky, "RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit," Proceedings of the National Academy of Sciences of the United States of America, vol. 98, pp. 3056-3061, Mar 13 2001.
[44] S. Prinz, et al., "Control of yeast filamentous-form growth by modules in an integrated molecular network," Genome Res, vol. 14, pp. 380-90, Mar 2004.
[45] L. Kuras and D. Thomas, "Functional analysis of Met4, a yeast transcriptional activator responsive to S-adenosylmethionine," Mol Cell Biol, vol. 15, pp. 208-16, Jan 1995.
[46] J. Lee, et al., "Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast," J Biol Chem, vol. 274, pp. 16040-6, Jun 4 1999.
[47] R. A. Monge, et al., "The MAP kinase signal transduction network in Candida albicans," Microbiology, vol. 152, pp. 905-12, Apr 2006.
[48] K. B. Lengeler, et al., "Signal transduction cascades regulating fungal development and virulence," Microbiol Mol Biol Rev, vol. 64, pp. 746-85, Dec 2000.
[49] C. A. D'Souza and J. Heitman, "Conserved cAMP signaling cascades regulate fungal development and virulence," FEMS Microbiol Rev, vol. 25, pp. 349-64, May 2001.
[50] Y. S. Bahn and P. Sundstrom, "CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans," J Bacteriol, vol. 183, pp. 3211-23, May 2001.
[51] D. P. Bockmuhl, et al., "Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans," Mol Microbiol, vol. 42, pp. 1243-57, Dec 2001.
[52] S. Biswas, et al., "Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans," Microbiology and Molecular Biology Reviews, vol. 71, pp. 348-+, Jun 2007.
[53] K. E. Krueger, et al., "Deletion of the NOT4 gene impairs hyphal development and pathogenicity in Candida albicans," Microbiology, vol. 150, pp. 229-40, Jan 2004.
[54] A. Nantel, et al., "Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition," Mol Biol Cell, vol. 13, pp. 3452-65, Oct 2002.
[55] C. A. Kumamoto, "A contact-activated kinase signals Candida albicans invasive growth and biofilm development," Proc Natl Acad Sci U S A, vol. 102, pp. 5576-81, Apr 12 2005.
[56] C. H. Wade, et al., "The budding yeast rRNA and ribosome biosynthesis (RRB) regulon contains over 200 genes," Yeast, vol. 23, pp. 293-306, Mar 2006.
[57] C. J. Barelle, et al., "Niche-specific regulation of central metabolic pathways in a fungal pathogen," Cell Microbiol, vol. 8, pp. 961-71, Jun 2006.
[58] A. M. Allen and R. D. King, "Occlusion, carbon dioxide, and fungal skin infections," Lancet, vol. 1, pp. 360-2, Feb 18 1978.
[59] J. H. Boysen, et al., "Detection of protein-protein interactions through vesicle targeting," Genetics, vol. 182, pp. 33-9, May 2009.
[60] S. Znaidi, et al., "Identification of the Candida albicans Cap1p regulon," Eukaryot Cell, vol. 8, pp. 806-20, Jun 2009.
[61] T. I. Jeon, et al., "SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice," J Clin Invest, vol. 118, pp. 3693-700, Nov 2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *