帳號:guest(18.221.129.145)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):趙佩盈
作者(外文):Chao, Pei-Ying
論文名稱(中文):具有幾乎連續頻率追蹤範圍的標準單元化高頻全數位鎖相迴路
論文名稱(外文):Standard Cell-Based High-Frequency ADPLL with Almost Continuous Tracking Range of Frequency
指導教授(中文):黃錫瑜
指導教授(外文):Huang, Shi-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:9761560
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:31
中文關鍵詞:全數位鎖相迴路數位控制震盪器智慧型控制碼跳躍
外文關鍵詞:All-digital phase-locked loop (ADPLL)digitally controlled oscillator (DCO)smart-code jumping
相關次數:
  • 推薦推薦:0
  • 點閱點閱:159
  • 評分評分:*****
  • 下載下載:22
  • 收藏收藏:0
在這篇論文裡面,我們提出了一個具有寬廣的頻率追蹤範圍的標準單元化(standard cell-based)全數位鎖相迴路(All-Digital Phase-Locked Loop, ADPLL)。除此之外,我們也提出了一個結合三種不同的控制方法(包含延遲路徑選擇、控制驅動能力以及控制負載電容)及使用新的排列方式組合而成的三段調控式數位控制震盪器(Three-Gear Digitally Controlled Oscillator, 3G-DCO),可同時達到改善數位控制震盪器可提供之最高頻率、頻率範圍及解析度的目的。搭配我們所提出的鏡像式數位控制震盪器的校準機制(Mirror-DCO-Based Calibration Mechanism)以及智慧型控制碼跳躍機制(Smart Code-Jumping Mechanism),當三段調控式數位控制震盪器所產生的週期來到某一個週期區間的端點時,它可以直接跳至鄰近的週期區間中,週期與當下的週期最相近的點。如此一來,我們的ADPLL可以克服先前數位控制震盪器所面臨的非連續性的問題,創造出一個幾乎連續的頻率追蹤範圍,讓ADPLL更適合操作在擁有溫度變異的環境中,並且能更接近傳統類比電路的效能。另外,在設計此ADPLL的過程中,我們採用了一般標準單元電路設計的設計流程,更縮短了其電路在更換製程時所耗費的時間。我們利用TSMC 0.18□m 之標準單元庫來實現此電路,經過佈局後之實驗結果顯示,我們所提出的三段調控式數位控制震盪器在TT-corner的情況下,可以操作在89 MHz ~ 1013 MHz 並且具有 2.54 ps 的平均解析度。而當ADPLL鎖定在1000 MHz 時,其方均根時脈抖動量及峰對峰的時脈抖動量分別為2.2 ps 與 17 ps。
A fully standard cell-based all-digital phase-locked loop (ADPLL) with wide tracking range of frequency is presented. The three-gear digitally controlled oscillator (3G-DCO) designed in this work adopts three different control methods (including path-selection, driving-strength controlling, and loading capacitance controlling) and a novel configuration to achieve the goal of improving not only the maximum output frequency, but also the output frequency range and the resolution of the DCO simultaneously. Combined with a proposed Mirror-DCO-Based Calibration Mechanism and a Smart Code-Jumping Mechanism, when the 3G-DCO arrives at the end-point of one clock-period region, it can immediately jump to the point in the adjacent clock-period region which has the closest clock period to the current one. In this way, we can overcome the discontinuity problem faced by most previous DCO’s to create an almost continuous frequency tracking range similar to an analog DCO, and make the ADPLL suitable for operations with temperature variation. Besides, the proposed ADPLL can be designed by following the general cell-based design flow, so that, it can decrease the design cycle time in a new process. Using TSMC 0.18□m CMOS technology, the simulation result shows that the three-gear digitally controlled oscillator designed in this work can operate from 89 MHz to 1013 MHz with 2.54 ps of average resolution (at TT-corner), and the proposed ADPLL has the RMS and the peak-to-peak jitter of 2.2 ps and 17 ps at 1000 MHz, respectively.
Abstract i
摘要 ii
致謝 iii
Content iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Thesis Organization 2
Chapter 2 Preliminaries 3
Chapter 3 Circuit Architecture 6
3.1 Overall Architecture 6
3.2 Three-Gear Digitally Controlled Oscillator 8
3.2.1 Alpha-Part 9
3.2.2 Beta-Part 9
3.2.3 Gamma-Part 9
3.3 Locking Procedure 13
3.3.1 □-code Detection 13
3.3.2 Mirror-DCO-Based Calibration 14
3.3.3 Frequency Detection 14
3.3.4 Preliminary Phase Locking 15
3.3.5 Jitter Minimization 15
Chapter 4 Tracking Algorithm with Smart Code-Jumping Mechanism 16
4.1 Mirror-DCO-Based Calibration Mechanism 17
4.1.1 Operation Procedure 18
4.1.2 Architecture of the Frequency Comparator 19
4.2 Smart Code-Jumping Mechanism 21
Chapter 5 Experimental Results 22
5.1 Post-Layout Simulation Results 22
Chapter 6 Conclusion 28
Bibliography 29
[1] H.-T. Ahn and D. J. Allstot, “A Low-Jitter 1.9 V CMOS PLL for UltraSPARC Microprocessor Applications,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 450-454, Mar. 2000.
[2] J. G. Maneatis, J. Kim, I. McClatchie, J. Maxey, and M. Shankarads, “Self-Biased High-Bandwidth Low-Jitter 1-to-4096 Multiplier Clock Generator PLL,” IEEE J. Solid-State Circuits, vol. 38, no. 11, pp. 1795–1803, Nov. 2003.
[3] B. Majkusiak, “Gate Tunnel Current in an MOS Transistor,” IEEE Trans. Electron Devices, vol. 37, no. 4, pp. 1087-1092, Apr. 1990.
[4] J. Pineda de Gyvez and H. P. Tuinhout, “Threshold Voltage Mismatch and Intra-Die Leakage Current in Digital CMOS Circuits,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 157-168, Jan. 2004.
[5] C.-C. Hung and S.-I. Liu, “A Leakage-Compensated PLL in 65-nm CMOS Technology,” IEEE Trans. on Circuits and Systems II, Express Briefs, vol. 56, no. 7, pp. 525-529, Jul. 2009.
[6] C.-C. Hung and S.-I. Liu, “A Leakage-Suppression Technique for Phase-Locked Systems in 65 nm CMOS Technology,” IEEE Int. Solid-State Circuits Conf., pp. 400-401, Feb. 2009.
[7] Michel Combes, Karim Dioury, and Alain Greiner, “A Portable Clock Multiplier Generator Using Digital CMOS Standard Cells,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 958-965, Jul. 1996.
[8] T.-Y. Hsu, B.-J. Shieh, and C.-Y. Lee, “An All-Digital Phase-Locked Loop(ADPLL)-Based Clock Recovery Circuit,” IEEE J. Solid-State Circuits, vol. 34, no. 8, pp. 1063-1073, Aug. 1999.
[9] T. Olsson and P. Nilsson, “Fully Integrated Standard Cell Digital PLL,” IEEE Electron. Lett., vol. 37, no. 4, pp. 211-212, Feb. 2001.
[10] T.-Y. Hsu, C.-C. Wang, and C.-Y. Lee, “Design and Analysis of a Portable High-Speed Clock Generator,” IEEE Trans. on Circuits and Systems II, vol. 48, no. 4, pp. 367-375, Jul. 2001.
[11] C.-C. Chung and C.-Y. Lee, “An All-Digital Phase-Locked Loop for High-Speed Clock Generation,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 347-351, Feb. 2003.
[12] T. Olsson and P. Nilsson, “A Digitally Controlled PLL for SoC Applications,” IEEE J. Solid-State Circuits, vol. 39, no. 5, pp. 751-760, May 2004.
[13] P.-L. Chen, C.-C. Chung, and C.-Y. Lee, “A Portable Digitally Controlled Oscillator Using Novel Varactors,” IEEE Trans. on Circuits and Systems II, Express Briefs, vol. 52, no. 5, pp. 233-237, May 2005.
[14] D. Sheng, C.-C. Chung, and C.-Y. Lee, “An All-Digital Phase-Locked Loop with High-Resolution for SoC Applications,” Proc. of Int’l Symp. on VLSI Design, Automation and Test, pp.1-4, Apr. 2006.
[15] P.-L. Chen, C.-C. Chung, J.-N. Yang, and C.-Y. Lee, “A Clock Generator with Cascaded Dynamic Frequency Counting Loops for Wide Multiplication Range Applications,” IEEE J. of Solid-State Circuits, vol. 41, no. 6, pp. 1275-1285, 2006.
[16] D. Sheng, C.-C. Chung, and C.-Y. Lee, “An Ultra-Low-Power and Portable Digitally Controlled Oscillator for SoC Applications,” IEEE Trans. on Circuits and Systems II, Express Briefs, vol. 54, no. 11, pp. 954-958, Nov. 2007.
[17] H.-H. Chang, S.-M. Lee, C.-W. Chou, Y.-T. Chang, and Y.-L. Cheng “A 1.6-880MHz Synthesizable ADPLL in 0.13□m CMOS,” Proc. of Int’l Symp. on VLSI Design, Automation and Test, pp.9-12, Apr. 2008.
[18] H.-J. Hsu and S.-Y. Huang, “A Low-Jitter ADPLL via a Suppressive Digital Filter and an Interpolation-Based Locking Scheme,” IEEE Trans. on VLSI Systems, vol. 17, no. 11, 2009.
[19] S.-K. Lee, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 1GHz ADPLL with a 1.25ps Minimum-Resolution Sub-Exponent TDC in 0.18□m CMOS,” IEEE Int. Solid-State Circuits Conf., pp. 482-483, Feb. 2010
[20] K.-H. Choi, J.-B. Shin, J.-Y. Sim, and H.-J. Park, “An Interpolating Digitally Controlled Oscillator for a Wide-Range All-Digital PLL,” IEEE Trans. on Circuits and Systems I, Regular Papers, vol. 56, no. 9, pp. 2055-2063, Sep. 2009.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *