帳號:guest(3.234.177.119)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張承恩
作者(外文):Chang, Cheng-en
論文名稱(中文):Modeling and Implementation of a Module Integtrated Converter for Photovoltaic Systems
論文名稱(外文):應用於光伏系統模組整合轉換器之建模與製作
指導教授(中文):潘晴財
指導教授(外文):Pan, Ching-Tsai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:9761509
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:66
中文關鍵詞:交流模組模組整合轉換器擬直流鏈
外文關鍵詞:AC ModuleModule Integrated ConverterPseudo dc link
相關次數:
  • 推薦推薦:0
  • 點閱點閱:45
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
有鑑於全球受到能源安全、氣候變遷、與永續發展的挑戰,近年來有效的使用再生能源已成為全球矚目的焦點。在眾多的再生能源中,太陽能光伏系統在環境上與經濟效益上擁有較多的優勢相較於其他系統。為了有效利用太陽能資源,太陽能交流模組系統近期最被廣泛的研究與探討。所謂模組整合型轉換器即為能夠提供隨插即用的功能的直交流轉換器,如此太陽光能才能被最有效率的使用。
由於太陽能光伏模組具有低輸出電壓的特性,所以本論文提出一應用於建築整合型太陽光電系統高升壓型擬直流鏈模組整合轉換器。基本上,本論文主要貢獻總結如下所述。首先,針對建築整合型太陽光電系統提出一單級具電器隔離擬直流鏈模組整合轉換器以解決遮蔽效應的問題。藉由耦合電感特性以及低頻切換直交流轉換以提升本論文模組整合轉換器整體效率。除此之外,採用本實驗試所研發之太陽能最大功率追蹤技術達到瞬時最大功率控制。第二,藉由轉換器的直流與交流數學模型推導作為穩態分析與閉迴路補償的依據。最後,本論文實際製作一輸入電壓30V、輸出電壓110Vrms、額定功率150W的雛型系統。整體的轉換效率都高於88%以上。由模擬與實驗的結果驗證本論文所提轉換器的有效性。
In view of the global challenges of energy security, climate change, and sustainable development, exploring the renewable energy draws a lot of attention in recent years. Throughout a variety of the renewable energy technology, photovoltaic technology has more environmental and economic benefits than the others. In order to utilize the photovoltaic energy effectively, the AC-Module is a hot research topic in recent years. Basically, the so called Module Integrated Converter (MIC) involves the concept of an inverter which can provide a “plug and play” function and greatly optimize the energy yield.
Due to the low dc voltage level of a PV module, a high step-up MIC with pseudo dc link is proposed in this thesis for Building Integrated PV (BIPV) application. Basically, major contributions of this thesis can be summarized as follows. First, a single stage high step-up MIC with pseudo dc link and galvanic isolation is proposed for BIPV systems to solve the partial shading problem. By using coupling inductor technique and the line frequency switching inverter, the proposed MIC can achieve higher efficiency. Moreover, an instantaneous maximum power tracking control previously developed by this lab is adopted. Next, both dc and ac mathematical models of the proposed converter are derived for steady state analysis and close loop compensation. At last, a 150 watts 30V input 110Vrms output prototype is implemented. The overall conversion efficiency is more than 88% from full load to light load. Both simulation and experimental results indeed verify the effectiveness of the proposed converter.
Abstract…………. II
Chinese Abstract……………III
Acknowledgements……………IV
Table of Contents…………V
List of Figures…………VII
List of Tables……. X
CHAPTER I Introduction 1
1.1 Motivation 1
1.2 Literature Survey 4
1.3 Contribution of this Thesis 5
1.4 Outline of Contents 6
CHAPTER II Some Module Integrated Converter Topologies 7
2.1 Introduction 7
2.2 Features of Module Integrated Converters 9
2.3 Some Existing Module Integrated Topologies 10
2.4 Discussion 17
CHAPTER III Modeling of the Proposed Module Integrated Converter 20
3.1 Introduction 20
3.2 Operation Principle of the Proposed MIC 21
3.3 Derivation of the Mathematical Models 26
3.4 Analysis of the Proposed MIC 36
CHAPTER IV Implementation and Experimental Results 43
4.1 Introduction 43
4.2 Design of Proposed MIC 44
4.3 Implementation of the Proposed MIC 45
4.4 Experimental results 52
CHAPTER V Conclusions 61
Reference……….. 63
[1] European Photovoltaic Industry Association. [online]. Available: http://www.epia.org/solar-pv/10-good-reasons-to-switch-to-solar-pv.html, 10 good reasons to switch to solar photovoltaic electricity [online]. Available
[2] “2010能源產業技術白皮書,” 經濟部能源局, 2010年4月
[3] International Energy Agency. March 2010 [online]. Available: http://www.iea.org/papers/2010/pv_roadmap.pdf, Solar photovoltaic energy – Technology Roadmap [online]. Available
[4] Kjaer S.B., Pedersen J.K., Blaabjerg F.,” Power inverter topologies for photovoltaic modules-a review,” in Proc. Industry Applications Conference, 2002, pp. 782-788.
[5] Wohlgemutg J., Herrmann W., “Hot spots test for crystalline silicon modules,” Photovoltaic Specialists Conference, 2005, pp.1062-1063.
[6] Kjaer S.B., “State of the art analysis for the ‘SolcelleInverter’ project,” Aalborg University, 2002.
[7] H. Oldenkamp, I. J. de Jong, “AC modules: past, present and future”, Proc. of workshop installing the solar solution, January 1998, UK.
[8] Q. Li, P. Wolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1320-1333, May 2008.
[9] A. Lohner, T. Meyer, and A. Nagel, “A new panel-integratable inverter concept for grid-connected photovoltaic systems,” in Proc. IEEE ISIE, 1996, pp. 827–831.
[10] D. C. Martins and R. Demonti, “Photovoltaic energy processing for utility connected system,” in Proc. IEEE IECON, 2001, pp. 1292–1296.
[11] D. C. Martins and R. Demonti, “Grid connected PV system using two energy processing stages,” in Proc. IEEE Photovoltaic SpecialistsConf., 2002, pp. 1649–1652.
[12] A. Fernandez, J. Sebastian, M. M. Hernando, M. Arias, and G. Perez,“Single stage inverter for a direct ac connection of a photovoltaic cell module,” in Proc. IEEE PESC, 2006, pp. 93–98.
[13] Q. Li and P. Wolfs, “A current fed two-inductor boost converter with lossless snubbing for photovoltaic module integrated converter applications,” in Proc. IEEE PESC, 2005, pp. 2111–2117.
[14] Q. Li and P. Wolfs, “A current fed two-inductor boost converter with an integrated magnetic structure and passive lossless snubbers for photovoltaic module integrated converter applications,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 309–321, Jan. 2007.
[15] K. Chomsuwan, P. Prisuwanna, and V. Monyakul, “Photovoltaic gridconnected inverter using two-switch buck-boost converter,” in Proc. IEEE Photovoltaic Specialists Conf., 2002, pp. 1527–1530.
[16] K. C. A. de Souza, M. R. de Castro, and F. Antunes, “A DC/AC converter for single-phase grid-connected photovoltaic systems,” in Proc. IEEE IECON, 2002, pp. 3268–3273.
[17] Q. Li, P. Wolfs, and S. Senini, “A hard switched high frequency link converter with constant power output for photovoltaic applications,” in Proc. Australasian Univ. Power Eng. Conf., 2002, CD-ROM.
[18] Q. Zhao, F. C. Lee, “ High-efficiency, high step-up DC-DC converter, ” IEEE Trans. Power Electron., vol. 18, no. 13, pp.65-73, January 2003.
[19] IEEE Standards Coordinating Committee 21, “IEEE application guide for IEEE Std 1547, IEEE standard for interconnecting distributed resources with electric power systems,” April, 2009.
[20] S. B. Kaer And F. Blaabjerg, “Dsign optimization of a single phase inverter for photovoltaic applications,” in Proc. IEEE PESC, 2003, pp. 1183–1190.
[21] S. Mekhilef, N. A. Rahim, And A. M. Omar, “A new solar energy conversion scheme implemented using grid-tied single phase inverter,” in Proc. IEEE TENCON, 2000, pp. 524–527.
[22] N. Kasa, T. Iida, And A. K. S. Bhat, “Zero-voltage transition flyback inverter for small scale photovoltaic power system,” in Proc. IEEE PESC, 2005, pp. 2098–2103.
[23] Z. Nie, A. Emadi, J. Mahdavi, A.Telefus, “SEPIC and BIFRED converters for switch-mode power supplies: A Comparative Study,” in Proc. IEEE INTELEC, 2002, pp. 444-450.
[24] S. Cuk, Slobodan, R. D. Middlebrook, “Advances in switched-mode power conversion part II, ” IEEE Trans. Ind. Electron., vol. IE-30, no.1, February, 1983.
[25] R. D. Middlebrook and S. Ćuk, “A general unified approach to modeling switching-converter power stages,” in Proc. IEEE Power Electronics Specialists Conference, 1976 , pp. 18-34.
[26] Rim C. T., Joung G. B., and Cho G. H., “Practical switch based state-space modeling of DC-DC Converters with All Parasitics,” IEEE Trans. Power Electron., Vol. 6, No. 4, pp. 611-617, Oct. 1991.
[27] Schenk K. and Ćuk S., “Small signal analysis and design of a single active switch converter providing power factor correction and full regulation,” in Proc. INTELEC Conference on Telecommunications Energy, 1997, pp. 124-131.
[28] P. Geng, W. M. Wu, U. Z. Ye, Y. J. Liu, “ Small signal modeling of a novel single-phase photovoltaic inverter, ” in Proc. IEEE IPEMC, 2009, pp. 2188-2192.
[29] Eng V., Pinsopon U., Bunlaksananusorn C., “Modeling of a sepic converter operating in continuous conduction mode, ” in Proc. ECTI-CON, 2009, pp. 136-139.
[30] C. T. Pan, J. Y. Chen, C. P. Chu, Y. S. Huang, “A fast maximum power point tracker for photovoltaic power systems, ” in Proc. IECON, 1999, pp. 390-393.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *