帳號:guest(18.118.1.232)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李孟寰
作者(外文):Lee, Meng-Huan
論文名稱(中文):以估測應電勢為主之無位置感測內置式永磁同步馬達驅動系統
論文名稱(外文):ESTIMATED BACK-EMF BASED POSITION SENSORLESS INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVE
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:9761501
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:144
中文關鍵詞:永磁同步馬達壓縮機風扇脈寬調變電流控制速度控制無感測控制換相前移數位信號處理器切換式整流器功因校正磁滯控制隨機切換升壓
外文關鍵詞:Permanent magnet synchronous motorcompressorfanpulse-width modulationcurrent controlspeed controlrobust controlsensorless controlcommutation tuningdigital signal processorswitch mode rectifierpower factor correctionhysteresis controlrandom switchingvoltage boosting
相關次數:
  • 推薦推薦:0
  • 點閱點閱:200
  • 評分評分:*****
  • 下載下載:25
  • 收藏收藏:0
本論文旨在開發一應用於冷凍空調系統之馬達驅動系統,其包含一弦波驅動無位置感測內置磁石式永磁同步馬達驅動之壓縮機、一方波驅動表面貼磁式永磁同步馬達驅動之風扇以及一單相升壓型切換式整流器前級由市電建立共通直流鏈電壓,並具有良好之交流入電電力品質。所建驅動系統之三個組成電力電路之全數位控制均由單一共同數位訊號處理器為之。
所建構弦波馬達驅動壓縮機之無位置感測控制器,利用所發展之兩種以內部模式為主反電動勢估測無位置感測方法為之,並進行性能比較評估。至於方波馬達驅動之風扇,其無位置感測控制係以感測之馬達線圈端電壓為之。對於此兩種無位置感測控制之永磁同步馬達驅動系統,均採適當之換相前移以改善不理想控制之驅動性能劣化,尤其在高速運轉情況下。另外,亦考慮較平滑且降低電流之啟動方式。
最後在本文所建構之單相切換式整流器前級方面,其具磁滯電流控制內迴路及外電壓控制迴路。利用簡易之強健控制技巧,改善電流及電壓之控制性能。此外,進一步開發隨機切換策略,應用於固定磁滯帶與正弦磁滯帶之電流控制脈寬調變機構,並由實測觀察其對電流諧波頻譜分散性及切換式整流器之操作性能影響。
This thesis develops a motor drive system for condensing unit applications. The system consists of a position sensorless sinewave excited interior permanent-magnet synchronous motor (IPMSM) driven compressor, a square-wave excited surface mounted PMSM (SPMSM) driven fan, and a single-phase boost-type switch mode rectifier (SMR) front end to establish their common DC-link voltage from utility with satisfactory line drawn power quality. All the constituted power stages are fully digitally controlled in a common digital signal processor (DSP).
For the compressor IPMSM drive, two types of sensorless control schemes based on the devised internal model based back-EMF estimators are developed and comparatively evaluated. As to the square-wave SPMSM fan drive, its position sensorless control is conducted based on the sensed motor terminal phase voltage. For these two types of PMSM drives, the proper commutation instant shifts are applied to enhance their driving performances, which may be deteriorated due to non-ideal sensorless controls, particularly under higher speeds. In addition, the smooth starting with less current transient is also considered.
Finally, in the established single-phase boost SMR front-end, it possesses the inner hysteresis current-controlled PWM (H-CCPWM) scheme and outer voltage control loop. The simple robust control approach is applied to yield improved current and voltage control performances. Moreover, various types of the randomly varying bands for the H-CCPWM schemes are proposed, and their effects on the current harmonic spectral spreading characteristics and the SMR operating performance are observed experimentally.
ACKNOWLEDGEMENTS
ABSTRACT
LIST OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
CHAPTER 1 INTRODUCTION
CHAPTER 2 COMMON DSP-BASED STANDARD
COMPRESSOR AND FAN PERMANENT
MAGNET SYNCHRONOUS MOTOR DRIVES
2.1 Introduction
2.2 Basics of PMSMs
2.3 Governing Equations
2.4 Speed Loop Dynamic Model
2.5 System Configuration of the Developed PMSM Drives
2.6 Power Circuit, Sensing and Interfacing Circuits
2.7 Standard PMSM Sine-wave Drive
2.8 Standard PMSM Square-wave Drive
CHAPTER 3 POSITION SENSORLESS CONTROL FOR
SINE-WAVE PMSM DRIVEN COMPRESSOR
3.1 Introduction
3.2 Some Existing PMSM Position Sensorless Control
Approaches
3.3 The Established Position Sensorless Sine-wave PMSM Drive
3.4 Performance Evaluation for the Test PMSM Drive
3.5 Performance Evaluation for the PMSM Driven Compressor
3.6 Commutation Instant Advanced Shifting
CHAPTER 4 POSITION SENSORLESS CONTROL FOR SQUARE-WAVE PMSM DRIVEN FAN
4.1 Introduction
4.2 Operation and Position Sensorless Control of a Square-wave
PMSM Drive
4.3 System Configuration and Proposed Sensorless Method
4.4 Starting
4.5 Estimated Speed Control
4.6 Random PWM Switching Control
CHAPTER 5 POSITION SENSORLESS CONTROLLED SINEWAVE PMSM DRIVE POWERED BY SWITCH-MODE RECTIFIER .
5.1 Introduction
5.2 Classification of SMRs
5.3 System Configuration and Problem Statements
5.4 Development of Boost Switch-Mode Rectifier
5.5 Hysteresis Current-Controlled PWM Scheme with Randomly
Varying Band
5.6 Experimental Performance Evaluation for the Whole
SMR-Fed Position Sensorless Controlled PMSM Drive
CHAPTER 6 CONCLUSIONS
REFERENCES
A. Permanent-Magnet Synchronous Motor Drives
[1] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machine and Drive System, New York: IEEE Press, 2002.
[2] D. C. Hanselman, Brushless Permanent-Magnet Motor Design, New York: McGraw, Inc., 1994.
[3] R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control, New Jersey: Prentice Hall, Inc., 2001.
[4] B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall, Inc., 2002.
[5] S. Morimoto, “Trend of permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 101-108, 2007.
[6] K. Ohyama and T. Kondo, “Energy-saving technologies for inverter air conditioners,” IEEJ Trans. Elect. Electron. Eng., vol. 3, no. 2, pp. 183-189, 2008.
[7] Y. Honda and Y. Takeda, “Technical evolution of permanent magnet synchronous motors for home appliances,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 118-124, 2007.
[8] T. Tanaka, “Environment friendly revolution in home appliances,” in Proc. ISPSD, 2001, pp. 91-95.
[9] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” in Proc. IEEE, 1999, vol. 2, pp. 840-845.
[10] A. Murray and Y. Li, “Motion control engine achieves high efficiency with digital PFC integration in air conditioner applications,” in Proc. IEEE ISEE, 2006, pp. 120-125.
[11] G. Jung, D. Chung and B. Suh, “Technology trends for highly efficient air conditioners,” Embedded Control Europe Magnizine, pp. 16-17, July 2007.
[12] H. Ichiro, N. Harunobu and H. Takuya, “Latest trends in air-conditioning technology,” Toshiba Review, vol. 64, no. 11, pp. 2-7, 2009.
[13] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent magnet motor drives, part I: the permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, 1989.
[14] P. Pillay and R. Krishnan, “Modeling, simulation, and analysis of permanent-magnet motor drives, part II: the brushless DC motor drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 274-279, 1989.
[15] S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor parameters,” in Proc. IEEE IAS, 1997, vol. 1, no. 1, pp. 29-34.
[16] F. F. Bernal, A. G. Cerrada and R. Faure, “Determination of parameters in interior permanent-magnet synchronous motors with iron losses without torque measurement,” IEEE Trans. Ind. Appl., vol. 37, no. 5, pp. 1265-1272, 2001.
[17] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter model for an interior PM synchronous machine,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 645-650, 2002.
[18] M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
B. PWM Switching and Dynamic Controls
[19] N. Mohan, T. M. Undeland and W. P. Robbims, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003.
[20] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converter: Principle and Practice, IEEE Press, 2003.
[21] J. Holtz, “Pulsewidth modulation- a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
[22] K. Taniguchi and A. Okumura, “A PAM inverter system for vector control of induction motor,” in Proc. IEEE PCCON, 1993, pp. 478-483.
[23] A. M. Hava, R. J. Kerkman and T. A. Lipo, “Carrier-based PWM-VSI over- modulation strategies: analysis, comparison, and design,” IEEE Trans. Power Electron., vol. 13, no. 4, pp. 674-689, 1998.
[24] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[25] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motor,” in Proc. IEE Electric Power Applicat., vol. 147, no. 6, pp. 503-512, 2000.
[26] M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1531-1538, 2000.
[27] D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM inverters with zero steady-state error,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 814-822, 2003.
[28] H. L. Huy, K. Slimani and P. Viarouge, “Analysis and implementation of a real-time predictive current controller for permanent-magnet synchronous servo drives,” in Proc. IEEE IAS, 1991, vol. 1, no. 28, pp. 996-1002.
[29] N. Matsui and H. Ohashi, “DSP-based adaptive control of a brushless motor,” IEEE Trans. Ind. Appl., vol. 28, no. 2, pp. 448-454, 1992.
[30] H. T. Moon, H. S. Kim and M. J. Youn, “A discrete-time predictive current control for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003.
[31] Y. A. R. I. Mohamed and E. F. El-Saadany, “A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 92-100, 2008.
[32] F. Morel, J. M. Retif, L. S. Xuefang and C. Valentin, “Permanent magnet synchronous machine hybrid torque control,” IEEE Trans. Ind. Elctron., vol. 55, no. 2, pp. 501-511, 2008.
[33] J. Bastos, A. Monti and E. Santi, “Design and implementation of a nonlinear speed control for a PM synchronous motor using the synergetic approach to control theory,” in Proc. IEEE PESC., 2004, vol. 5, pp. 3397-3402.
[34] Y. A. R. Ibrahim, M. M. Abu-Elnaga and M. A. El-Sayad, “Robust speed control of PMSM drive system with lag time compensation,” in Proc. IEEE ICEEC, 2004, pp. 823-829.
[35] C. B. Butt, M. A. Hoque and M. A. Rahman, “Simplified fuzzy-logic-based MTPA speed control of IPMSM drive,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1529-1535, 2004.
[36] M. Nour, I. Aris, N. Mariun and S. Mahmoud, “Hybrid model reference adaptive speed control for vector controlled permanent magnet synchronous motor drive,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 618-623
[37] Dong-Hee Lee and Jin-Woo Ahn, “Dual speed control scheme of servo drive system for a nonlinear friction compensation,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 959-965, 2008.
[38] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans.Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
[39] S. Carrie`re, S. Caux and M. Fadel, “Optimised speed control in state space for PMSM direct drives,” IET Electr. Power Appl., vol. 4, no. 3, pp. 158-168, 2010.
C. Tuning Control and Filed-Weakening Control
[40] H. C. Chen and C. M. Liaw, “Sensorless control via intelligent commutation tuning for brushless DC motor,” in Proc. IEE Electric Power Appl., vol. 146, no. 6, pp. 678-684, 1999.
[41] C. C. Liaw, C. M. Liaw, H. C. Chang and M. S. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, no. 2, pp. 1045-1051.
[42] C. Mademlis, J. Xypteras and N. Margaris, “Loss minimization in surface permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 47, no. 1, pp. 115-122, 2000.
[43] T. Schneider, T. Koch and A. Binder, “Comparative analysis of limited field weakening capability of surface mounted permanent magnet machines,” in Proc. IEE Electric Power Appl., vol. 151, no. 1, pp. 76-82, 2004.
[44] J. Simanek, J. Novak, O. Cerny, and R. Dolecek, “FOC and flux weakening for traction drive with permanent magnet synchronous motor,” in Proc. ISIE, 2008, pp. 753-758.
[45] S. Bolognani, L. Peretti and M. Zigliotto, “Combined speed and current model predictive control with inherent field-weakening features for PMSM drives,” in Proc. MELECON, 2008, pp. 472-478.
[46] J. X. Xu, S. K. Panda, Y. J. Pan, T. H. Lee and B. H. Lam, “A modular control scheme for PMSM speed control with pulsating torque minimization,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 526-536, 2004.
[47] P. Mattavelli, L. Tubiana and M. Zigliotto, “Torque-ripple reduction in PM synchronous motor drives using repetitive current control,” IEEE Trans. Power Electron., vol. 20, no. 6, pp. 1423-1431, 2005.
D. Position Sensorless Control
[48] K. Rajashekara, and A. Kawamura, Sensorless control of AC motor drives, New York: IEEE press, 1996.
[49] J. P. Johnson, M. Ehsani and Y. Guzelgunler, “Review of sensorless methods for brushless DC,” in Proc. IEEE IAS, 1999, vol. 1, pp. 143-150.
[50] M. Schroedl, “Sensorless control of permanent-magnet synchronous machines: An overview,” in Proc. EPE-PEMC, 2004, vol. 2, pp. 115-123.
[51] D. Montesinos, S. Galceran, A. Sudria, O. Gomis and F. Blaabjerg, “Low cost sensorless control of permanent magnet motors an overview and evaluation,” in Proc. IEEE EMD, 2005, pp. 1681-1688.
[52] N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 300-308, 1996.
[53] S. Morimoto, M. Sanada and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” in Proc. IEEE IAS, 2005, vol. 1, no.1, pp. 297-303.
[54] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006.
[55] M. Rashed, P. F. A. MacConnell, A. F. Stronach and P. Acarnley, “Sensorless indirect-rotor-field-orientation speed control of a permanent magnet synchronous motor with stator resistance estimation,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1664-1675, 2007.
[56] Z. Chen, M. Tomita, S. Doki and S. Okuma, “New adaptive sliding observers for position- and velocity sensorless controls of brushless DC motors,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 582-591, 2000.
[57] J. Solsona, M. I. Valla and C. Muravchik, “A nonlinear reduced order observer for permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 43, no. 4, pp. 38-43, 1996.
[58] J. Kim and S. Sul, “High performance PMSM drives without rotational position sensors using reduced order observer,” in Proc. IEEE IAS, 1995, vol.1, pp. 75-82.
[59] A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for sensorless control of PMSM drives,” in Proc. IEEE IECON, 2005, pp. 1474-1479.
[60] M. Tomita, T. Senjyu, S. Doki and S. Okuma, “New sensorless control for brushless DC motors using disturbance observers and adaptive velocity estimations,” IEEE Trans. Ind. Electron., vol. 45, no. 2, pp. 274-282, 1998.
[61] M. C. Huang, A. J. Moses and F. Anayi, “The comparison of sensorless estimation techniques for PMSM between extended Kalman filter and flux-linkage observer,” in Proc. IEEE APEC, 2006, vol. 2, pp. 654-659.
[62] A. Dianov, J. Y. Choi, K. W. Lee and J. H. Lee, “Sensorless vector controlled drive for reciprocating compressor,” in Proc. PESC, 2007, pp. 580-586.
[63] R. Leidhold and P. Mutschler, “Improved method for higher dynamics in sensorless position detection,” in Proc. IECON, 2008, pp. 1240-1245.
[64] M. Tomita, M. Satoh, H. Yamaguchi, S. Dokim and S. Okuma, “Sensorless estimation of rotor position of cylindrical brushless DC motors using eddy current,” in Proc. IEEE IECON, 1996, vol. 3, no. 3, pp. 24-28.
[65] J. P. Johnson and M. Ehsani, “Sensorless brushless DC control using a current waveform Anomaly,” in Proc. IEEE IAS, 1999, vol. 1, no.1, pp. 151-158.
[66] S. Seman and J. Luomi, “Application of carrier frequency signal injection in sensorless control of a PMSM drive with forced dynamics,” in Proc. IEEE PEDS, 2003, vol. 2, no. 2, pp. 1663-1668.
[67] A. Piippo, M. Hinkkanen and J. Luomi, “Sensorless control of PMSM drives using a combination of voltage model and HF signal injection,” in Proc. IEEE IAS, 2004, vol. 2, no. 2, pp. 964-970.
[68] J. H. Jang, J. I. Ha, M. Ohto, K. Ide and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[69] H. C. Chen and C. M. Liaw, “Current-mode control for sensorless BDCM drive with intelligent commutation tuning,” IEEE Trans. Power Electron., vol. 17, no. 5, pp. 747-756, 2002.
[70] Z. Chen, M. Tomita, S. Ichikawa, S. Doki and S. Okuma, “Sensorless control of interior permanent magnet synchronous motor by estimation of extended electromotive force,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1814-1819.
[71] S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Appl, vol. 38, no. 4, pp. 1054-1061, 2002.
[72] S. Morimoto, K. Kawamoto and Y. Takeda, “Position and speed sensorless control for IPMSM based on estimation of position error,” Electrical Engineering in Japan, vol. 144, no. 2, pp. 43-52, 2003.
[73] K. Tanaka and I. Miki, “Position sensorless control of interior permanent magnet synchronous motor using extended electromotive force,” Electrical Engineering in Japan, vol. 161, no. 3, pp. 41-48, 2007.
[74] H. Kim and T. M. Jahns, “Phase current reconstruction for AC motor drives using a DC link single current sensor and measurement voltage vectors,” IEEE Trans. Power Electron., vol. 21, no. 5, 2006.
[75] G. Foo and M. F. Rahman, “Sensorless adaptive sliding mode control of an IPM synchronous motor drive using a sliding mode observer and HF signal injection,” in Proc. IEEE EPE, 2009, pp. 1-11.
[76] Y. J. Kim, H. S. Kang and Y. S. Kim, “A sensorless speed control of an IPMSM using the observers with the adaptive structure,” in Proc. IEEE ICEMS, 2008, pp. 3079-3084.
[77] A. Eilenberger and M. Schroedl, “Extended Back EMF model for PM synchronous machines with different inductances in d- and q-axis,” in Proc. IEEE EPEPEMC, 2008, pp. 945-948.
E. Switching-Mode Rectifiers and Front-End AC/DC Converters
[78] M. S. Dawande and G. K. Dubey, “Single phase switch mode rectifiers,” in Proc. IEEE PEDES, 1996, pp. 637-642.
[79] W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE Southeastcon, 1998, pp. 348-353.
[80] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[81] G. Moschopoulos and P. Jain, “Single-phase single-stage power-factor-corrected converter topologies,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 23-35, 2005.
[82] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust ripple compensation and current waveform controls,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 560-566, 2004.
[83] S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust varying-band hysteresis PWM scheme,” IEEE Trans. Power Electron., vol. 16, no. 6, pp. 1417-1425, 2004.
[84] P. Wolfs and P. Thomas, “Boost rectifier power factor correction circuits with improved harmonic and load voltage regulation responses,” in Proc. IEEE PESC, 2007, pp. 1314-1318.
[85] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” IET Proc. Elect. Power Appl., vol. 1, no. 3, pp. 316-328, 2007.
[86] L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[87] Y. C. Chang and C. M. Liaw, “Design and control for a charge-regulated flyback switch mode rectifier,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 59-74, 2009.
F. Random PWM Switching Methods
[88] T. G. Habetler and D. M. Divan, “Acoustic noise reduction in sinusoidal PWM drives using a randomly modulated carrier,” IEEE Trans. Power Electron., vol. 6, no. 3, pp. 356-363, 1991.
[89] C. M. Liaw, Y. M. Lin, C. H. Wu and K. I. Hwu, “Analysis, design and implementation of a random frequency PWM inverter,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 843-854, 2000.
[90] B. J. Kang and C. M. Liaw, “Random hysteresis PWM inverter with robust spectrum shaping,” IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 2, pp. 619-629, 2001.
[91] B. J. Kang and C. M. Liaw, “Development of a robust random switching hysteresis PWM inverter for linear positioning control,” Electric Power Components and Systems, vol. 30, no. 7, pp. 741-767. 2002.
[92] S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust varying-band hysteresis PWM scheme,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1417-1425, 2004.
[93] J. Y. Chai, Y. H. Ho, Y. C. Chang and C. M. Liaw, “On acoustic-noise-reduction control using random switching technique for switch-mode rectifiers in PMSM drive,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1295-1309, 2008.
G. Others
[94] “TMS320F2812 digital signal processors data manual,” http://focus.ti.com/lit/ds/ symlink/tms320f2812.pdf.
[95] F. Nedoogar and Moriarty, Digital Control Using Digital Signal Processing, New Jersey: Prentice Hall, Inc., 1999.
[96] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic System, 4th ed. New Jersey: Prentice Hall, Inc., 2002.
[97] Mitsubishi semiconductor PS21265-P/AP datasheet, “http://mitsubishichip.com/
Global/common/cfm/ePartProfile.cfm?FILENAME=ps21265-p(-ap)_e.pdf.”
[98] C. C. Li, “A common DSP-based permanent magnet synchronous motor driven condensing unit,” M.S. Thesis, Department of Electric Engineering, National Tsing Hua Univ., Taiwan, R.O.C., 2009.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *