帳號:guest(3.22.248.208)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇小維
作者(外文):Su, Xiao-Wei
論文名稱(中文):電流輔助退火處理對Bi0.5Sb1.5Te3濺鍍薄膜熱電傳輸性質之研究
論文名稱(外文):Effect of electric current stressing on thermal/electrical transport properties of sputtered Bi0.5Sb1.5Te3 thin films
指導教授(中文):廖建能
指導教授(外文):Liao, Chien-Neng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9731516
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:65
中文關鍵詞:熱電薄膜熱傳導係數3-omega 法電遷移Bi0.5Sb1.5Te3
外文關鍵詞:thermoelectric thin filmsthermal conductivity3-omega methodelectromigrationBi0.5Sb1.5Te3
相關次數:
  • 推薦推薦:0
  • 點閱點閱:87
  • 評分評分:*****
  • 下載下載:32
  • 收藏收藏:0
Bi2Te3系列化合物為目前室溫下熱電性質表現最佳的材料系統,且普遍用於商用熱電致冷器模組中。由實驗室之前的研究結果顯示,Bi0.5Sb1.5Te3濺鍍薄膜在經短時間電流輔助退火後,反位缺陷能有效被消除,導致載子遷移率的大幅提升,雖然載子濃度也小幅下降,但電阻率並無上升的情況,導致熱電功率因子可以得到大幅度的改善。

本研究利用在長有二氧化矽薄膜的矽基板上濺鍍Bi0.5Sb1.5Te3薄膜,經單純熱退火及電流輔助退火處理後量測並比較其電性傳輸性質,經電流輔助退火後的Bi0.5Sb1.5Te3薄膜在個別退火溫度下普遍擁有較高的載子遷移率與較低的載子濃度。根據電性傳輸理論計算與變溫霍爾效應的量測,我們確認高溫及電流輔助處理後Bi0.5Sb1.5Te3薄膜的載子傳輸主要由聲子散射機制所主導。接著我們利用3ω熱傳導係數量測法量測經不同退火溫度處理過的Bi0.5Sb1.5Te3薄膜熱傳導係數,並藉由理論計算所得的羅倫茲常數分離出聲子與載子的熱傳導係數。我們發現相較於單純熱退火處理,電流輔助退火後的試片擁有較高的聲子熱傳導係數。根據薄膜聲子熱傳導係數隨退火溫度變化的結果得知Bi0.5Sb1.5Te3薄膜在短時間退火處理後並無明顯晶粒成長的現象,因此推測Bi0.5Sb1.5Te3薄膜內反位缺陷的大量消除為幫助提升電流輔助退火後Bi0.5Sb1.5Te3薄膜聲子熱傳導係數提升的主要原因。

XRD分析結果顯示Bi0.5Sb1.5Te3薄膜經退火處理後,薄膜內部晶粒面向分佈並無嚴重的(00l)方向性,因此在3ω熱傳導係數量測法中所量測到的熱傳導係數可以配合電性量測數據進一步計算出Bi0.5Sb1.5Te3薄膜經不同退火溫度處理後的ZT值。實驗結果發現Bi0.5Sb1.5Te3薄膜經5分鐘330°C電流輔助退火後,其Seebeck係數可以提升至為201.9(μV/K),電阻率為4.65(mΩ-cm),熱傳導係數為0.7(W/mK),其熱電功率因子約為8.76(μW/K2cm),而ZT值可以達到0.38左右。
Bismuth telluride-based compound is currently widely used in commercial thermoelectric module due to its excellent thermoelectric performances around room temperature regime. Previous study showed that anti-site defects can be much more effectively eliminated after electric current assisted thermal treatment within a short period of time for sputtered Bi0.5Sb1.5Te3 thin films. Enormous enhancement in carrier mobility compensates the reduction in carrier concentration and results in a reasonable electrical resistivity. Thermoelectric power factor of Bi0.5Sb1.5Te3 thin films has been markedly improved by this post-deposition treatment
In this study, Bi0.5Sb1.5Te3 thin films were sputtered on SiO2/Si substrate. Electrical transport properties were measured and compared for films with thermal annealing and electric current stressing treatment. Bi0.5Sb1.5Te3 films after electric current stressing treatment has much higher carrier mobility and moderately lower carrier concentration than those thermally annealed at the same temperature. From theoretical calculation and Hall measurement at different temperatures, we confirm that the carrier transport properties is dominated by lattice scattering mechanism especially for high-temperature annealed and electric current stressed samples. Then we apply the conventional 3ω thermal conductivities measurement for samples annealed at different temperatures. Using Lorentz number acquired from theoretical calculation, electronic and lattice thermal conductivities were separated from the measured intrinsic thermal conductivities. Compared with thermal annealing samples, the lattice thermal conductivities of electric current stressed Bi0.5Sb1.5Te3 films were found to be higher than that of thermally annealed samples. According to the variation of lattice thermal conductivity with annealing temperature, there is no obvious grain growth for Bi0.5Sb1.5Te3 films with such short thermal treatments. Elimination of a large number of anti-site defects in Bi0.5Sb1.5Te3 films may be the main cause of higher lattice thermal conductivities in electrical stressed samples.
The crystal orientation investigated by XRD analysis indicated no (00l) preferred orientation for processed films. So the ZT values of Bi0.5Sb1.5Te3 films can be further calculated with the value measured by the 3ω thermal conductivities measurement. The experimental results showed that the Bi0.5Sb1.5Te3 films after electrical stressed for 5minutes has a Seebeck coefficient of 201.9(μV/K), a lower electrical resistivity of 4.65(mΩ-cm) and a thermal conductivity of 0.7(W/mK) which brought about a highest thermoelectric power factor of 8.76(μW/K2cm) and a ZT value of 0.38.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 熱電原理 2
1.3 熱電效能的提升 3
1.4 研究動機 10
第二章 文獻回顧 12
2.1 聲子熱傳導之散射機制 12
2.1.1 點缺陷散射 14
2.1.2 晶界散射 17
2.1.3 摻雜異質奈米相及顆粒 20
2.2 3ω熱傳導係數量測法原理 24
2.3 3ω熱傳導係數量測方法試片製作之限制 28
2.3.1 基板溫度的推導 28
2.3.2 薄膜熱傳導係數方向性的影響 31
第三章 實驗規劃 34
3.1 實驗設計與流程 34
3.2 電性傳輸性質量測與薄膜微結構觀測方法 37
3.3 3ω熱傳導係數量測實驗設計 38
第四章 結果與討論 40
4.1 室溫下所濺鍍Bi0.5Sb1.5Te3熱電薄膜之熱電性質 40
4.2 單純熱退火處理對Bi0.5Sb1.5Te3熱電薄膜熱電性質的影響 41
4.3 電流輔助退火處理對Bi0.5Sb1.5Te3熱電薄膜熱電性質的影響 47
4.4 微結構變化與Bi0.5Sb1.5Te3薄膜熱電性質的關係 52
第五章 結論 63
參考文獻 64
[1] G. J. Snyder, and E. S. Toberer, Nat Mater 7, 105 (2008).
[2] G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics : Basic Principles and New Materials Developments (Springer, Berlin, 2001) Chap.2.
[3] J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science 321, 554 (2008).
[4] K. Kishimoto, and T. Koyanagi, Journal of Applied Physics 92, 2544 (2002).
[5]王亞帆,能障散射效應對 Bi0.5Sb1.5Te3 薄膜熱電性質影響之研究,國立清華大學
碩士論文(2007)
[6] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A.
Mute, D. Vashaee, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren,
Science 320, 634 (2008).
[7] R. Venkatasubramanian, Physical Review B 61, 3091 (2000).
[8] C. N. Liao, K. M. Liou, and H. S. Chu, Applied Physics Letters 93, 042103 (2008).
[9] J. Callaway, and H. C. von Baeyer, Physical Review 120, 1149 (1960).
[10] G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics : Basic Principles and New Materials Developments (Springer, Berlin, 2001) Chap.3.
[11] T. Chang-Lin, A. Marjumdar, and F. M. Gerner, Microscale Energy Transport (Taylor & Francis, Washington, D.C., 1998) Chap.2.
[12] Z. Zhou, C. Uher, A. Jewell, and T. Caillat, Physical Review B 71, 235209 (2005).
[13] H. J. Goldsmid, and A. W. Penn, Phys. Lett. 27A, 523 (1968).
[14] M. Takashiri, K. Miyazaki, S. Tanaka, J. Kurosaki, D. Nagai, and H. Tsukamoto, Journal of Applied Physics 104, 084302 (2008).
[15] C. N. Liao, Y. C. Wang, and H. S. Chu, Journal of Applied Physics 104, 104312 (2008).
[16] J. R. Sootsman, R. J. Pcionek, H. Kong, C. Uher, and M. G. Kanatzidis, Chemistry of Materials 18, 4993 (2006).
[17] W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar , Physical Review Letters 96, 045901 (2006).
[18] D. G. Cahill, Review of Scientific Instruments 61, 802 (1990).
[19] S. M. Lee, and D. G. Cahill, Journal of Applied Physics 81, 2590 (1997).
[20] T. Borca-Tasciuc, A. R. Kumar, and G. Chen, Review of Scientific Instruments 72, 2139 (2001).
[21] E. T. Swartz, and R. O. Pohl, Reviews of Modern Physics 61, 605 (1989).
[22] G. R. Miller, and C. Y. Li, Journal of Physics and Chemistry of Solids 26, 173 (1965).
[23] Z. Stary, J Horák, M. Stordeur, and M Stölzer, Journal of Physics and Chemistry of Solids 49, 29 (1988).
[24] H. M. Gilder, and D. Lazarus, Physical Review 145, 507 (1966).
[25] T. Caillat, M. Carle, P. Pierrat, H. Scherrer and S. Scherrer, Journal of Physics and Chemistry of Solids 53, 1121 (1992)
[26] S. K. Mishra, S. Satpath, and O. Jepsen, Journal of Physics: Condensed Matter 9,
461 (1997).
[27] S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd Edition
(Wiley, New York, 2002) Chap.3.
[28] M. Takashiri, K. Miyazaki, and H. Tsukamoto, Thin Solid Films 516, 6336 (2008).
[29] D. Bourgault, C. Giroud Garampon, N. Caillaut, L. Carbone, and J. A. Aymami,
Thin Solid Films 516, 8579 (2008).
[30] D. H. Kim, G. H. Lee, and O. J. Kim, Semiconductor Science and Technology 22, 132 (2007).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *