帳號:guest(18.224.149.242)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂宥蓉
作者(外文):Lu, Yu-Jung
論文名稱(中文):準一維氮化鎵半導體p-n接面的電性及顯微研究
論文名稱(外文):Nanoelectrical properties of quasi one-dimensional GaN p-n junction probed by electron microscopy
指導教授(中文):果尚志
指導教授(外文):Gwo, Shangjr
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:9722517
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:70
中文關鍵詞:二極體奈米柱氮化鎵空乏區載子濃度
外文關鍵詞:p-n junctionnanorodGaNdepletion regioncarrier concentration
相關次數:
  • 推薦推薦:0
  • 點閱點閱:95
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
本實驗室目前可以成功的利用黃光微影製程製作單根奈米柱二極體元件,並利用場發射掃描式電子顯微鏡(FE-SEM)結合奈米操控系統做電性量測的優勢,我們可以量測到外加偏壓下p-n接面的影像變化,其呈現的影像與偵測器接收的二次散射電子濃度成正比的關係,藉此做影像分析,推論出空乏區寬度與p-n接面位障。另一方面,目前利用霍爾量測的方式,研究半導體塊材的載子濃度被廣泛地使用,但霍爾量測目前尚未發展出一套方式可測量一維奈米線載子濃度。有鑑於此,本論文的研究方向,提出一個方法,觀察並且量測p-n接面二極體在顯微系統下的特性變化,諸如利用FE-SEM影像(散射電子影像)直觀的觀察空乏區寬度隨逆向偏壓的影響、不同逆向偏壓電子空間位能分佈情形等等,經由關係式換算可得一維二極體的空間電場分布,藉此得到p型區與n型區域的載子濃度比例,並可加以推算半導體的p型或n型區域所攜的載子濃度。
One-dimensional Ⅲ-nitride (AlN, GaN, InN) nanorod structures are well known to have great prospects for fundamental studies and novel technological applications. However, direct determination of the carrier concentrations by Hall effect is not easy if not impossible for nanorod structures. Here, we demonstrate a method which can be applied to study single GaN nanorod p-n junctions grown by plasma-assisted molecular-beam epitaxy (PAMBE) with an in-situ multiple-probe system installed in a field-emission scanning electron microscope (FESEM). We can directly observe the electrostatic potential variation across the depletion region in the reversely biased nanorods, and the electrostatic potential can be determined directly from secondary electron images. In particular, we show that this method can be use for estimating the carrier concentration in single GaN nanorod p-n junctions.
第一章、序論
1.1前言
1.2 實驗動機
1.3文獻回顧
第二章、奈米元件製程 (Device Fabrication)
2.1 樣品製備
2.2 光學微影(photolithography)
2.3奈米柱元件製作
2.3.1奈米操控技術
2.3.2.Focus ion beam 聚焦離子束 製作電極
2.3.3黃光微影製程亂數方式製作單根奈米元件
2.4實驗流程:
第三章、量測與結果分析
3.1光性量測
3.2 氮化鎵奈米柱二極體(p-n junction GaN nanorod) 電性量測:
3.2.1二極體電性量測理論與實驗分析:
3.2.2經過熱退火處理(annealing treatment)的電性比較
3.2.3 光電壓電流特性
3.3 FE-SEM 影像探討一維p-n junction顯微分析
3.3.1 FE-SEM成像原理
3.3.2 外加偏壓下一維p-n接面影像分析
3.3.3一維p-n接面基本特性分析
3.3.4 半導體p-n接面電位能障分析
3.3.5 一維二極體空乏區寬度的實驗與理論分析
3.4載子濃度計算
3.5 小尺寸效應(Small size effect)
3.6 FESEM image討論
3.6.1改變不同掃描積分方向:
3.6.2 不同電子訊號偵測器所測的影像:
3.6.3不同加速電壓(EHT)所的到的影像:
第四章、結論
第五章、參考資料
[1] Donald A. Neamen , “Fundamental of Semiconductor Physics and Devices”.

[2] Y. S. Park, C. M. Park, J. W. Lee et al., "Electrical transport properties of a nanorod GaN p-n homojunction grown by molecular-beam epitaxy," J. Appl. Phys. 103 (6), 3 (2008)

[3] Paul A. Midgley and Rafal E. Dunin-Borkowski, "Electron tomography and holography in materials science," Nat Mater 8 (4), 271-280 (2009).

[4] David Cooper, Alison C. Twitchett-Harrison, Paul A. Midgley et al., "The influence of electron irradiation on electron holography of focused ion beam milled GaAs p-n junctions," J. Appl. Phys. 101 (9), 094508-094505 (2007).

[5] A. C. Twitchett, R. E. Dunin-Borkowski, and P. A. Midgley, "Quantitative Electron Holography of Biased Semiconductor Devices," Physical Review Letters 88 (23), 238302 (2002).

[6] S. Hoffmann et al., Nano Lett. 9, 1341 (2009).

[7] Y. S. Park et al., J. Appl. Phys. 103, 3 (Mar, 2008).

[8] Handbook:”Properties of advanced semiconductor materials”. Edited by Michael E. Levinshtein.

[9] 奈米檢測技術,國家儀器科技研究中心。

[10] D. W. Bahnemann, Israel J. Chem., 33, 115 (1993).

[11] M. A. Andeson, S. Yamazaki-Nishida, and S. Cervera-Marrch, Photocatalytic Purification and Treatment of Water and Air, ed. By D. Oillis and D. F. Al-Ekabi, New York: Elsevier Science Pub. (1993).

[12] W. P. Halperin, Rev. of Modern Phys., 58, 832 (1986).

[13] R. Kubo, J. Phys. Soc. Jpn., 17, 975 (1962).
[14] Mesoscopic Systems Fundamentals and Applications, ed. Yoshimasa
Murayama.

[15] Introduction to Solid State Physics, ed. Kittel.

[16] 單一半導體奈米線之電性研究,蔡秉諺著,清華大學碩士論文。

[17] 半導體奈米線材之操控、組裝及量測,楊右丞著,清華大學碩士論文。

[18] 氮化鎵光子晶體共振腔,丁于真,中央大學碩士論文

[19] M. Zervos, Semiconductor Science and Technology 23, 075016 (2008).

[20] Duan X, Huang Y, Cui Y, Wang J and Lieber C M, Nature 409 , 66 (2001).

[21] Huang Y, Duan X, Cui Y and Lieber C M, Nano Lett. 2, 101 (2002).

[22] Tutuc E et al , Nano Lett. 6, 2070 (2006).

[23] Hu J et al, Proc. SPIE 6468, 64681E-1(2007).

[24] Kayes B M, Atwater H A and Lewis N S, J. Appl. Phys.
97, 114302 (2005).

[25] Zervos M and Feiner L F, J. Appl. Phys. 95 , 281 (2004).

[26] Leonard F and Talin A A , Phys. Rev. Lett. 97, 026804 (2006).

[27] Piotr Matyba, Klara Maturova, Martijn Kemerink et al., Nat Mater 8, 672-676 (2009).

[28] W. D. Rau et al., Phys. Rev. Lett. 82, 2614 (1999).

[29] Z. Wang et al., Appl. Phys. Lett. 80, 246 (2002).

[30] S. M. Sze, Semiconductor Devices (Wiley, Singapore, 2002), 2nd ed., p. 91.

[31] M. Beleggia et al., Micron 31, 231 (2000).

[32] S. Frabboni, G. Matteucci, and G. Pozzi, Ultramicroscopy 23, 29 (1987).

[33] S. N. Das and A. K. Pal, "Properties of a nanocrystalline GaN p-n□
homojunction prepared by a high pressure sputtering technique,"
Semiconductor Science and Technology 21 (12), 1557 (2006).

[34] S. Mil’shtein, “Operation of semiconductor devices visualized by SEM”, Science, Technology and education of microscopy:an overview.

[35] T. Kato, R. Hatakeyama, J. Shishido, W. Oohara, K. Tohji, Applied Physics
Letters 95 (8), 083109-083103 (2009).

[36] Jung Ho Yoo, Jun-Mo Yang, Shaislamov Ulugbek et al., J Electron Microsc 57,
13-18 (2008).

[37] P. F. Fazzini, P. G. Merli, G. Pozzi, F. Ubaldi, Physical Review B 72 , 085312
(2005).

[38] A. C. Twitchett-Harrison, T. J. V. Yates, S. B. Newcomb, R. E.Dunin-Borkowski, P. A. Midgley, Nano Lett. 7 , 2020-2023 (2007).

[39] M. Belegia, P. F. Fazzini, P. G. Merli et al., Physical Review B 67 ,
045328 (2003).

[40] Paul A. Midgley and Rafal E. Dunin-Borkowski, Nat Mater 8, 271-280 (2009).

[41] David Cooper, Jean-Michel Hartmann, Bernard Aventurier et al., Applied
Physics Letters 93, 183509-183503 (2008).

[42] Piotr Matyba, Klara Maturova, Martijn Kemerink et al., Nat Mater 8, 672-676
(2009).

[43] A. C. Twitchett, R. E. Dunin-Borkowski, and P. A. Midgley, Physical Review
Letters 88, 238302 (2002).

[44] David Cooper, Alison C. Twitchett-Harrison, Paul A. Midgley et al.,
J. Appl. Phys. 101, 094508-094505 (2007).


[45] David Cooper, Pierrette Rivallin, Jean-Michel Hartmann et al., J. Appl. Phys.
106, 064506-064506 (2009).

[46] David Cooper, Cyril Ailliot, Robert Truche et al., J. Appl. Phys. 104
, 064513-064518 (2008).

[47] David Cooper, Robert Truche, Pierrette Rivallin et al., Applied Physics Letters
91, 143501-143503 (2007).

[48] David Cooper, Alison C. Twitchett, Philippa K. Somodi et al., Applied Physics
Letters 88 , 063510-063513 (2006).

[49] M. R. McCartney, M. A. Gribelyuk, Jing Li et al., Applied Physics Letters 80 ,
3213-3215 (2002).

[50] Martha R. McCartney, Nipun Agarwal, Suk Chung et al., Ultramicroscopy

[51] M. Kayes Brendan, A. Atwater Harry, and S. Lewis Nathan, J. Appl. Phys. 97 ,
114302 (2005).

[52] M. Zervos, Semiconductor Science and Technology 23, 075016 (2008).

[53] Kim Jae-Ryoung and et al., Nanotechnology 13 (5), 701 (2002).

[54] 半導體製造技術, 張景學、吳昌崙編著。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *