帳號:guest(18.117.91.153)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高震驊
作者(外文):Kao, Chen-Hua
論文名稱(中文):應用於生醫植入系統晶片之無線功率傳輸與資料收發電路
論文名稱(外文):Wireless Power and Data Transmission with ASK Demodulator, FSK Modulator and Power Regulator for Biomedical Implantable SoC
指導教授(中文):鄭桂忠
指導教授(外文):Tang, Kea-Tiong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:9661615
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:67
中文關鍵詞:生醫植入晶片ASK解碼器
外文關鍵詞:Implantable SoCASK Demodulator
相關次數:
  • 推薦推薦:0
  • 點閱點閱:101
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著科技的進步與人類對於健康管理的需求,工程科技與生物醫學的結合發展將帶給人們便利與許多新的契機,人體植入晶片的應用,即是半導體科技與生物醫學的結合產物,現今的生醫植入系統晶片逐漸發展成為無線電源傳輸架構,不僅能夠減少使用者的不舒適感,也改善植入裝置電池壽命的問題,而透過雙向的資料傳輸,我們可以控制植入系統,也可以從植入系統獲得資訊。
本研究論文中,建立一個無線電源傳輸與資料的收發電路,晶片端包含的Power Regulator、ASK(Amplitude Shift Keying)解碼器與FSK(Frequency Shift Keying)編碼器構成,使用TSMC 0.18μm CMOS製程,總面積為0.031mm^2(不包含PAD)。傳輸系統利用線圈電磁場耦合接收外部電源與資料,Power regulator產生穩定電源提供給晶片內部或其它電路,ASK解碼器負責解調接收到的ASK訊號,解調植入裝置的控制訊號,並且提供植入裝置時脈訊號,而FSK編碼器可將植入裝置欲傳輸的資料訊號進行編碼,在透過線圈耦合傳出。
本論文提出一個無電阻電容、具有高效率資料傳輸、可靠度高、並且可彈性應用的ASK 解碼電路,其Modulation Index可低達4.05%、Modulation Rate為50%,利用自我解調(Self-Sampling)的概念架構,能同時把時脈訊號與資料一起解碼出來,提供植入晶片系統的時脈與資料,實用性高、擁有穩健的解調功能,不受限於製程上的誤差而喪失功能,在面積與功率也不會消耗太大的系統資源。並且可以彈性控制其Modulation Index隨著不同的應用系統而改變。
Biomedical implantable devices have appeared for more than fifty years. With more understandings of neuroscience, some diseases caused by neural abnormal discharge or disable may be cured or improved by neural stimulation techniques. Most of the wireless implantable devices transmit power and data into the no-battery implantable device by magnetic coupling. And the bidirectional data transmission, we can control and monitor the implantable system.
This thesis presents the wireless power and bidirectional data transmission for biomedical implantable SoC. The chip contains power regulator, ASK (Amplitude Shift Keying) demodulator and FSK (Frequency Shift Keying) modulator, using the TSMC 0.18μm CMOS processing. The chip size is 0.031mm^2.(Without PAD) The transmission system utilizes coils electric magnetic field coupling the power and data into the chip, Power regulator produces the stability power for chip and other circuits. The ASK demodulator can decode the ASK signal and provide the clock signal. The FSK modulator can encode the implantable device data signal which wanted to transmit out, and transmitted through coil coupling.
This study presents a novel ASK demodulator using the self-sampling structure for biomedical implantable devices. The modulation index and modulation rate are relative to power transmission efficiency. Results show that with a 2MHz carrier, the proposed ASK demodulator structure has a minimum modulation index down to 4.05% and a 50 % maximum modulation rate. The ASK demodulator also has a controllable modulation index and maintains a constant high-efficiency modulation rate for biomedical implantable systems.
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1研究背景 1
1.2 植入式裝置基本原理 2
1.3 研究動機 3
1.4 章節簡介 4
第二章 文獻回顧 5
2.1植入式系統應用 5
2.2植入式系統功率傳輸 9
2.3 植入式系統資料傳輸 12
第三章 植入式系統電路 15
3.1 System Structure 15
3.2 Power Regulator 16
3.2.1電路架構 16
3.2.2模擬結果 18
3.3 ASK Demodulator 20
3.3.1 電路架構 20
3.3.2模擬結果 22
3.4 FSK modulator 25
3.4.1電路架構 25
3.4.2模擬結果 26
3.5 晶片佈局 27
第四章 Chip Measurement Results 29
4.1 Power Regulator 29
4.2 ASK Demodulator 33
4.3 FSK Modulator 39
4.4 Chip Summary 41
第五章 外部收發端離散電路 42
5.1 ASK Modulator 42
5.1.1電路架構 42
5.1.2量測結果 43
5.2 FSK Demodulator 45
5.2.1電路架構 45
5.2.2量測結果 45
第六章 Transmission Experiment 47
6.1系統傳輸架構 47
6.2 Power Link 48
6.3傳輸系統硬體架設 50
6.4量測結果 52
第七章 結論 58
7.1總結 58
7.2未來工作 59
參考文獻 60
[1]Djourno A, Eyriès C. 'Prothèse auditive par excitation électrique à distance du nerf sensoriel à l'aide d'un bobinage inclus à demeure.' In: La Presse Médicale 65 no.63. 1957.
[2]Djourno A, Eyriès C, 'Vallencien B. De l'excitation électrique du nerf cochléaire chez l'homme, par induction à distance, à l'aide d'un micro-bobinage inclus à demeure.' CR de la société.de biologie. 423-4. March 9, 1957.
[3]Berruecos, Pedro. Cochlear implants: An international perspective - Latin American countries and Spain. Audiology. Hamilton: Jul/Aug 2000. Vol. 39, 4:221-225
[4]Eisen MD, 'Djourno, Eyries, and the first implanted electrical neural stimulator to restore hearing.' in: Otology and Neurotology. 2003 May;24(3):500-6.
[5]Johnston, Trevor. W(h)ither the Deaf Community? In 'American Annals of the Deaf' (volume 148 no. 5)
[6]Itovsky, Ruth Y., et al. "Bilateral Cochlear Implants in Children: Localization Acuity Measured with Minimum Audible Angle." Ear & Hearing, 2006; 27; 43-59.
[7]Officiers, P.E., et. a. "International Consensus on bilateral cochlear implants and bimodal stimulation." Acta Oto-Laryngologica, 2005; 125; 918-919.
[8]Reefhuis J, et al. Risk of Bacterial Meningitis in Children with Cochlear Implants, USA 1997-2002. New England Journal of Medicine, 2003; 349:435-445.
[9]Spencer, Patricia Elizabeth and Marc Marschark. Cochlear Implants: Issues and Implications. In 'Oxford Handbook of Deaf Studies, Language and Education', ed. Marc Marschark and Patricia Elizabeth Spencer, 434-450. Oxford: Oxford University Press, 2003.
[10]Furman S, Szarka G, Layvand D, "Reconstruction of Hyman's second pacemaker", Pacing Clin Electrophysiol.2005 May;28(5):446-453
[11]Bernstein A, Daubert J, Fletcher R, Hayes D, Lüderitz B, Reynolds D, Schoenfeld M, Sutton R (2002). "The revised NASPE/BPEG generic code for antibradycardia, adaptive-rate, and multisite pacing. North American Society of Pacing and Electrophysiology/British Pacing and Electrophysiology Group". Pacing Clin Electrophysiol 25 (2): 260-4
[12] Cleland JGF, Daubert J-C, Erdmann E, et al; the Cardiac Resynchronization — Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005 March 7
[13]Cleland J, Daubert J, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L (2005). "The effect of cardiac resynchronization on morbidity and mortality in heart failure". N Engl J Med 352 (15): 1539-49
[14]Bristow M, Saxon L, Boehmer J, Krueger S, Kass D, De Marco T, Carson P, DiCarlo L, DeMets D, White B, DeVries D, Feldman A (2004). "Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure". N Engl J Med 350 (21): 2140-50
[15]Wilkoff BL, Cook JR, Epstein AE, et al.: Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual-chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA 2002, 288: 3115–3123
[16]Chun DW, Heier JS, Raizman MB. (2005). "Visual prosthetic device for bilateral end-stage macular degeneration.". Expert Rev Med Devices. 2 (6): 657-65
[17]Lane SS, Kuppermann BD, Fine IH, Hamill MB, Gordon JF, Chuck RS, Hoffman RS, Packer M, Koch DD. (2004). "A prospective multicenter clinical trial to evaluate the safety and effectiveness of the implantable miniature telescope.". Am J Ophthalmol. 137 (6): 993-1001.
[18]Lane SS, Kuppermann BD. (2006). "The Implantable Miniature Telescope for macular degeneration.". Curr Opin Ophthalmol. 17 (1): 94-8
[19]J.D. Loudin, D.M. Simanovskii, K. Vijayraghavan, C.K. Sramek, A.F. Butterwick, P. Huie, G.Y. McLean, and D.V. Palanker (2007). "Optoelectronic retinal prosthesis: system design and performance". J Neural Engineering 4: S72–S84
[20]Villavicencio AT, Leveque JC, Rubin L, Bulsara K, Gorecki JP (2000). "Laminectomy versus percutaneous electrode placement for spinal cord stimulation". Neurosurgery 46 (2): 399-405; discussion 405-6.
[21]Oakley JC, Prager JP (2002). "Spinal cord stimulation: mechanisms of action". Spine 27: 2574-83
[22]Matharu MS, Bartsch T, Ward N, Frackowiak RS, Weiner R, Goadsby PJ (2004). "Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study". Brain 127 (Pt 1): 220-30
[23]North RB, Kidd DH, Farrokhi F, Piantadosi SA (2005). "Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial". Neurosurgery 56 (1): 98-106; discussion 106-7
[24]Schmidt RA, Jonas A, Oleson KA, Janknegt RA, Hassouna MM, Siegel SW, van Kerrebroeck PE. Sacral nerve stimulation for treatment of refractory urinary urge incontinence. Sacral nerve study group. J Urol 1999 Aug;16(2):352-357
[25]Brindley GS, Polkey CE, Rushton DN (1982): Sacral anterior root stimulator for bladder control in paraplegia. Paraplegia 20: 365-381
[26]S. P. Levine, J. E. Huggins, S. L. BeMent, R. K. Kushwaha, L. A. Schuh, M. M. Rohde, E. A. Passaro, D. A. Ross, K. V. Elisevich, and B. J. Smith, "A direct brain interface based on event-related potentials," IEEE Trans Rehabil Eng, vol. 8, pp. 180-5, 2000
[27]Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, Kim J, Biggs SJ, Srinivasan MA, Nicolelis MA. (2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 16: 361-365
[28]Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, D.M., Dimitrov, D.F., Patil, P.G., Henriquez, C.S., Nicolelis, M.A.L. (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biology, 1: 193-208
[29]Lebedev, M.A., Carmena, J.M., O’Doherty, J.E., Zacksenhouse, M., Henriquez, C.S., Principe, J.C., Nicolelis, M.A.L. (2005) Cortical ensemble adaptation to represent actuators controlled by a brain machine interface. J. Neurosci. 25: 4681-4693
[30]Serruya M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., Donoghue, J.P., (2002) Instant neural control of a movement signal. Nature 416: 141-142
[31]Wentai Liu,Sivaprakasam M., Guoxing Wang, Mingcui Zhou, Granacki J., “Implantable biomimetic microelectronic systems design,” in Engineering in Medicine and Biology Magazine, IEEE, Sept.-Oct. 2005,pp.66-74.
[32]Sawan, M.; Yamu Hu; Coulombe, J.,” Wireless smart implants dedicated to multichannel monitoring and microstimulation,” Circuits and Systems Magazine, IEEE, volume: 5, pp. 21-39, Mar. 2005.
[33]Berson EL, Rosner B, Sandberg MA, et al, “A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa” in Arch. Ophthalmol., vol. 111(6), 1993, pp. 761-772.
[34]Berson EL, “Long-term visual prognoses in patients with retinitis pigmentosa: the Ludwig von Sallmann lecture” in Exp. Eye. Res., vol. 85(1), 2007, pp. 7-14.
[35]Dorin Panescu,” Vagus nerve stimulation for the treatment of depression,” in IEEE Engineering in Medicine and Biology Magazine, Vol. 24, 2005, pp. 68 – 72.
[36]Moore, S.K., “Psychiatry's shocking new tools (brain stimulation techniques)” in IEEE Spectrum, Vol. 43, 2006, pp.24 – 31.
[37]Haddad S.A.P., Houben R.P.M., and Serdijin W.A.,"The evolution of pacemakers," IEEE Engineering in Medicine and Biology Magazine, Vol.25,2006,pp. 38-48
[38]Wentai Liu,Sivaprakasam M., Guoxing Wang, Mingcui Zhou, and Granacki J., “Implantable biomimetic microelectronic systems design,” in Engineering in Medicine and Biology Magazine, IEEE, Sept.-Oct. 2005,pp.66-74.
[39]Chi-Chun Huang, Shou-Fu Yen, and Chua-Chin Wang,"A Li-ion battery charging design for biomedical implants," IEEE APCCAS 2008,pp. 400-403
[40]Roundy S., Leland E.S., Baker J., Carleton E., Reilly E., Lai E., Otis B., Rabaey J.M., Wright P.K., and Sundararajan V., "Improving power output for vibration-based energy scavengers," IEEE Pervasive Computing, Vol.4,2005,pp. 28-36
[41]Parramon Piella, Jordi, “Energy Management, wireless and system solutions for highly integrated implantable devices”, Doctoral dissertation, Departament d’Enginyeria Electronica Universitat Autonoma de Barcelona 2001.
[42]S. Yuan and B.C. Kim, “Low dropout voltage regulator for wireless applications,” IEEE Power Electronics Specialists Conference, vol. 2, pp. 421-424, no. 7, June 2002.
[43]U Fat Chio and Yu-Tzu Hsiao, ”Analog Frontend of an Implantable Biological Nerve Micro-stimulation Chip,” National Sun Yat-sen University Dissertation, June 2004.
[44]R. J. Milliken, J. Silva-Martínez, and E. Sánchez-Sinencio, “Full On-Chip CMOS Low-Dropout Voltage Regulator,” IEEE Trans.Circuit and System I, volume.54, Dec. 2007, pp. 1879-1890.
[45]T. Y. Man, P. K. T. Mok, and M. Chan, “A High Slew-Rate Push-Pull Output Amplifier for Low-Quiescent Current Low-Dropout Regulators With Transient-Response Improvement,” IEEE Trans. Circuits Syst. I, Vol. 54, no. 9, Sept. 2007,pp. 755–759.
[46]Crepaldi Paulo, Pimenta Tales, Moreno Robson,and Rodriguez Edgar,"A CMOS Linear power supply for a Wireless Biomedical Sensor," IEEE Medical Measurements and Applications 2010,pp. 97-101
[47]Mohamad Sawan, Yamu Hu, and Jonathan Coulombe, "Wireless smart implants dedicated to multichannel monitoring and microstimulation," IEEE Circuits and Systems Magazine,Vol.5,pp. 21-39,2005.
[48]G. Gudnason, “A low-power ASK demodulator for inductively coupled implantable electronics”, in: IEEE International Solid-States Circuits Conference, September 2000, pp. 385–388.
[49]W. Liu, K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes, E. McGucken, M. S. Humayun, E. De Juan, J. D.Weiland, and R. Greenberg, ”A neuro-stimulus chip with telemetry unit for retinal prosthetic device,”IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1487-1497, Oct. 2000.
[50]A. Djemouai and M. Sawan, Integrated ASK Demodulator Dedicated to Implantable Electronic Devices, The 46th IEEE Midwest Symposium on Circuits and systems, 2003.
[51]Chua-Chin Wang, Ya-Hsin Hsueh, U Fat Chio, and Yu-Tzu Hsiao,”A C-less ASK demodulator for implantable neural interfacing chips,”International Symposium on Circuits and Systems, Volume 4, pp. IV-57-60 Vol.4, 23-26 May. 2004.
[52]G.B. Hmida, M. Dhieb, H. Ghariani, M. Samet, Transcutaneous power and high data rate transmission for biomedical implants, in: 2006 International Conference on Design and Test of Integrated Systems in Nanoscale Technology, 2006, pp. 374–378.
[53]Chua-Chin Wang, Tzung-Je Lee, U Fat Chio, Yu-Tzu Hsiao, Jia-Jin J. Chen,"A 570-kbps ASK demodulator without external capacitors for low-frequency wireless bio-implants,"MICROELECTRONICS JOURNAL,Volume: 39, pp. 130-136,JAN. 2008.
[54]Cihun-Siyong Alex Gong, Muh-Tian Shiue, Kai-Wen Yao, Tong-Yi Chen, Yin Chang, and Chun-Hsien Su,"A Truly Low-Cost High-Efficiency ASK Demodulator Based On Self-Sampling Scheme for Bioimplantable Applications," IEEE Circuits and Systems, Volume 55, July 2008 Page(s):1464 – 1477
[55]Wayne Tomasi, “Advanced electronic communication systems” Fifth edn., Person Education, 2003.
[56]V. Gupta, G. A. Rincon-Mora and P. Raha, “Analysis and Design of Monolithic, High PSR, Linear Regulators for SoC Applications”, IEEE International SOC Conference, pp. 311-315, Sep. 2004
[57]Jung, L.H.; Byrnes-Preston, P.; Hessler, R.; Lehmann, T.; Suaning, G.J.; Lovell, N.H.,”A Dual Band Wireless Power and FSK Data Telemetry for Biomedical Implants,” IEEE 29th EMBS conf., 2007, pp. 6596-6599
[58]C. M. Zierhofer and E. S. Hochmair, “Geometric approach for coupling enhancement of magnetically coupled coils,” IEEE Trans. Biomed. Eng., vol. 43, no. 7, pp. 708–714, Jul. 1996.
[59]M. Ghovanloo and S. Atluri, “A wide-band power-efficient inductive wireless link for implantable microelectronic devices using multiple carriers,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 54, no. 10, pp. 2211–2221, Oct. 2007.
[60]W. H. Ko, S. P. Liang, and C. D. Fung, “Design of radio-frequency powered coils for implant instruments,” Med. Biol. Eng. Comput., vol.15, pp. 634–640, 1977.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *