帳號:guest(18.189.170.17)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘耿儀
作者(外文):Pan, Geng-Yi
論文名稱(中文):解析度為五點六微微秒搭配多路徑環形振盪器之時間至數位轉換器
論文名稱(外文):A 5.6ps Resolution Time-to-Digital Converter Using a Multipath Ring Oscillator
指導教授(中文):黃柏鈞
指導教授(外文):Huang, Po-Chiun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:9661592
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:77
中文關鍵詞:時間至數位轉換器環形振盪器
外文關鍵詞:TDCring oscillator
相關次數:
  • 推薦推薦:0
  • 點閱點閱:23
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
時間至數位轉換器(Time-to-digital converter, TDC)迄今在各個領域都有廣泛的應用,其中包含雷射測距儀(Time-of-flight laser range finder)、超音波厚度測量(Ultrasonic thickness measurement)、高能粒子探測器(High energy physics particle detector) 、晶片抖動測量(On-chip jitter measurement)、射頻全數位頻率合成器(RF all-digital frequency synthesizer)等等。各種應用皆有不同的時差解析度(timing resolution)以及動態範圍(dynamic resolution)的要求。

本篇論文中,高時差解析度、大動態範圍、低功率消耗的時間至數位轉換器在此提出。傳統中以延遲線為基礎的時間至數位轉換器的解析度受限於製程的閘延遲。近年來,游標尺式(Vernier delay line)、內插式(Time interpolation)、時間放大(Time residue amplification)等技巧已被提出用來打破時間至數位轉換器在解析度的限制。然而,因為提高解析度伴隨而來的是面積及功率消耗的急
遽增加。

此時間至數位轉換器以計數器重複使用內部的延遲細胞(Delay-cell),搭配多路徑環形振盪器(Multipath ring oscillator)提高解析度。藉由雙計數器與狀態至相位邏輯(State-to-phase logic)達到準確的時間轉換。由於影響多路徑環形振盪器其震盪頻率的因素眾多,為了節省設計的時間與複雜度,此多路徑環
形振盪器藉著改善後的時間與功率模型分析做最佳化的處理。晶片的製作採用台積電90-nm 1P9M 製程來實現,晶片面積為0.18mm2,在1.2-V 的工作電壓下其時間至數位轉換器的解析度小於6ps,功率消耗則為9.6mW。
This thesis reports the design and implementation of a time-to-digital convertor (TDC) with high resolution, wide detect range, and low power dissipation. Conventionally, the time resolution of a conventional delay-line based TDC is usually limited by the delay cell. Recently, several TDC structures have been proposed to provide sub-gate-delay resolutions, such as Vernier delay line, passive time interpolation, and time residue amplification. However, the finer resolution makes the number of delay elements grow fast.
This work describes a counter-based high-resolution TDC with a multi-path ring oscillator (MRO) as the timing generator. Precise conversion of sub-gate-delay resolution is based on a pair of counters and state-to-phase (S2P) logics. The MRO is optimized with an improved timing model and power consumption analysis. Running from a single 1.2-V power supply, experimental results for the TDC prototype show that less than 6 ps resolution is achieved with 9.6mW power consumption. The TDC has been fabricated in a tandard 90-nm CMOS process. The die area is 0.18 mm2.
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Background on Time-to-Digital Converter 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Analog Time-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Time-to-Voltage TDC . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Dual Slope Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 TDC with Gate-Delay Resolution . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Scaling Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Classical Delay-Chain TDC . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Cyclic Delay-Chain TDC . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 TDC with Sub-Gate-Delay Resolution . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Pulse Shrinking Delay Element . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Vernier Delay Line (VDL) TDC . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Delay Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
ii
CONTENTS
2.4.4 Oscillator-Based TDC . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Multipath Ring Oscillator Design 21
3.1 Achieving Sub-Gate-Delay Row Resolution . . . . . . . . . . . . . . . . . . . 22
3.2 Multi-Inputs Delay Element Implementation . . . . . . . . . . . . . . . . . . . 25
3.3 Delay Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Single-Path Ring Oscillator . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Multipath Ring Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Power Consumption Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.1 Major Sources of Power Consumption . . . . . . . . . . . . . . . . . . 34
3.4.2 Power Consumption of Multi-Input Delay Element . . . . . . . . . . . 35
3.5 Layout Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4 Hardware Efficient MRO TDC in An All-Digital Frequency Synthesizer Applica-
tion 41
4.1 Phase-Domain All-Digital Frequency Synthesizer . . . . . . . . . . . . . . . . 42
4.2 The Proposed Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Multiphase Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Design Consideration of the MRO . . . . . . . . . . . . . . . . . . . . 48
4.4 Fractional Phase Read-Out Circuit . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.1 Measurement Entirely with Counters . . . . . . . . . . . . . . . . . . 51
4.4.2 Measuring Frequency by Tracking Phase . . . . . . . . . . . . . . . . 52
iii
CONTENTS
4.4.3 State-to-Phase (S2P) Logic . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Integer Phase Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6 Phase Combiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5 Chip Implementation and Measurement Result 62
5.1 Chip Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Measurement Setup and Experimental Result . . . . . . . . . . . . . . . . . . 64
5.2.1 On-Chip Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.2 TDC Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.3 INL/DNL characteristic . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.4 TDC Code Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6 Conclusion and FutureWork 76
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Appendix A vi
[1] R. Staszewski, S. Vemulapalli, P. Vallur, J.Wallberg, and P. Balsara, “1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS,” IEEE Trans. Circuits Syst. II, vol. 53, no. 3, pp. 220–224, Mar. 2006.
[2] P. Dudek, S. Szczepanski, and J. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 240–247, Feb. 2000.
[3] S. Henzler, S. Koeppe, D. Lorenz, W. Kamp, R. Kuenemund, and D. Schmitt-Landsiedel, “A local passive time interpolation concept for variation-tolerant high-resolution time-to-digital conversion,” IEEE J. Solid-State Circuits, vol. 43, no. 7, pp. 1666–1676, July 2008.
[4] M. Lee and A. Abidi, “A 9 b, 1.25 ps resolution coarse-fine time-to-digital converter in 90nm CMOS that amplifies a time residue,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 769–777, Apr. 2008.
[5] K. Karadamoglou, N. Paschalidis, E. Sarris, N. Stamatopoulos, G. Kottaras, and V. Paschalidis, “An 11-bit high-resolution and adjustable-range CMOS time-to-digital converter for space science instruments,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 214–222, Jan.
2004.
[6] E. Raisanen-Ruotsalainen, T. Rahkonen, and J. Kostamovaara, “A low-power CMOS time-to-digital converter,” IEEE J. Solid-State Circuits, vol. 30, no. 9, pp. 984–990, Sep. 1995.
[7] A. Mantyniemi, T. Rahkonen, and J. Kostamovaara, “An integrated 9-channel time digitizer with 30 ps resolution,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. of Tech.Papers, Feb. 2002, pp. 266–267.
[8] M. Tanaka, H. Ikeda, M. Ikeda, and S. Inaba, “Development of monolithic time-to-amplitude converter for high precision TOF measurement,” IEEE Trans. Nucl. Sci., vol. 38,no. 2, pp. 301–305, Apr. 1991.
[9] E. Raisanen-Ruotsalainen, T. Rahkonen, and J. Kostamovaara, “A time digitizer with interpolation based on time-to-voltage conversion,” in Proceedings of the 40th Midwest Symposium on Circuits and Systems, Aug. 1997, pp. 197–200.
[10] P. Chen, C.-C. Chen, and Y.-S. Shen, “A low-cost low-power CMOS time-to-digital converter based on pulse stretching,” IEEE Trans. Nucl. Sci., vol. 53, no. 4, pp. 2215–2220,Aug. 2006.
[11] B. Razavi, Design of analog CMOS integrated circuits. McGraw-Hill, Inc. New York, NY, USA, 2000.
[12] A. Mantyniemi, T. Rahkonen, and J. Kostamovaara, “A CMOS time-to-digital converter (TDC) based on a cyclic time domain successive approximation interpolation method,”IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3067–3078, Nov. 2009.
[13] P. Chen, S.-L. Liu, and J. Wu, “A CMOS pulse-hrinking delay element for time interval measurement,” IEEE Trans. Circuits Syst. II, vol. 47, no. 9, pp. 954–958, Sep. 2000.
[14] P. Dudek, S. Szczepanski, and J. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 240–247, Feb. 2000.
[15] T. Rahkonen and J. Kostamovaara, “The use of stabilized CMOS delay lines for the digitization of short time intervals,” IEEE J. Solid-State Circuits, vol. 28, no. 8, pp. 887–894, Aug. 1993.
[16] V. Ramakrishnan and P. Balsara, A wide-range, high-resolution, compact CMOS, time to digital converter. IEEE Computer Society, 2006.
[17] C. Hwang, P. Chen, and H.-W. Tsao, “A high-precision time-to-digital converter using a two-level conversion scheme,” IEEE Trans. Nucl. Sci., vol. 51, no. 4, pp. 1349–1352, Aug. 2004.
[18] M. Abas, G. Russell, and D. Kinniment, “Embedded high-resolution delay measurement system using time amplification,” Computers & Digital Techniques, IET, vol. 1, no. 2, pp. 77–86, Mar. 2007.
[19] S. Lee, Y. Seo, Y. Suh, H. Park, and J. Sim, “A 1GHz ADPLL with a 1.25ps minimum-resolution sub-exponent TDC in 0.18μm CMOS,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. of Tech. Papers, Feb. 2010, pp. 482–483.
[20] J. Yu, F. Dai, and R. Jaeger, “A 12-bit Vernier ring time-to-digital converter in 0.13μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 830–842, Apr. 2010.
[21] A. Liscidini, L. Vercesi, and R. Castello, “Time to digital converter based on a 2-dimensions Vernier architecture,” in IEEE Custom Integrated Circuits Conference (CICC), Sep. 2009, pp. 45–48.
[22] S. Henzler, S. Koeppe, D. Lorenz, W. Kamp, R. Kuenemund, and D. Schmitt-Landsiedel, “Variation tolerant high resolution and low latency time-to-digital converter,” in 33rd European Solid State Circuits Conference (ESSCIRC), Sep. 2007, pp. 194–197.
[23] M. Straayer and M. Perrott, “A multi-path gated ring oscillator TDC with first-order noise shaping,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1089–1098, Apr. 2009.
[24] J.-M. Chou, Y.-T. Hsieh, and J.-T.Wu, “A 125MHz 8b digital-to-phase converter,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. of Tech. Papers, Feb. 2003, pp. 496–497.
[25] B. Garlepp, K. Donnelly, J. Kim, P. Chau, J. Zerbe, C. Huang, C. Tran, C. Portmann, D. Stark, Y. Chan, T. Lee, and M. Horowitz, “A portable digital DLL for high-speed CMOS interface circuits,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 632–644, May 1999.
[26] S. Sidiropoulos and M. Horowitz, “A semidigital dual delay-locked loop,” IEEE J. Solid-State Circuits, vol. 32, no. 11, pp. 1683–1692, Nov. 1997.
[27] J. Maneatis and M. Horowitz, “Precise delay generation using coupled oscillators,” IEEE J. Solid-State Circuits, vol. 28, no. 12, pp. 1273–1282, Dec. 1993.
[28] S. Mohan, W. Chan, D. Colleran, S. Greenwood, J. Gamble, and I. Kouznetsov, “Differential ring oscillators with multipath delay stages,” in IEEE Custom Integrated Circuits Conference (CICC), Sep. 2005, pp. 503–506.
[29] S.-J. Lee, B. Kim, and K. Lee, “A novel high-speed ring oscillator for multiphase clock generation using negative skewed delay scheme,” IEEE J. Solid-State Circuits, vol. 32, no. 2, pp. 289–291, Feb. 1997.
[30] L. Sun and T. Kwasniewski, “A 1.25-GHz 0.35-μm monolithic CMOS PLL based on a multiphase ring oscillator,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 910–916, June 2001.
[31] H. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits,” IEEE J. Solid-State Circuits, vol. 19, no. 4, pp. 468–473, Aug. 1984.
[32] C. Mead and L. Conway, Introduction to VLSI systems. Addison-Wesley Reading, MA, 1980.
[33] N.Weste and D. Harris, CMOS VLSI design: a circuits and systems perspective. Addison-Wesley, 2005.
[34] W. Elmore, “The transient response of damped linear networks with particular regard to wideband amplifiers,” Journal of Applied Physics, vol. 19, no. 1, p. 55, 1948.
[35] R. Staszewski, K. Muhammad, D. Leipold, C.-M. Hung, and et al., “All-digital TX frequency synthesizer and discrete-time receiver for Bluetooth radio in 130-nm CMOS,”
IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2278–2291, Dec. 2004.
[36] R. Staszewski and P. Balsara, “Phase-domain all-digital phase-locked loop,” IEEE Trans.
Circuits Syst. II, vol. 52, no. 3, pp. 159–163, Mar. 2005.
[37] ——, All-digital frequency synthesizer in deep-submicron CMOS. Wiley-Blackwell, 2006.
[38] M. Matsui, H. Hara, Y. Uetani, L. Kim, T. Nagamatsu, Y.Watanabe, A. Chiba, K. Matsuda, and T. Sakurai, “A 200 MHz 13 mm2 2-D DCT macrocell using sense-amplifying pipeline
flip-flop scheme,” IEEE J. Solid-State Circuits, vol. 29, no. 12, pp. 1482–1490, Dec. 1994.
[39] F. Herzel and B. Razavi, “A study of oscillator jitter due to supply and substrate noise,”IEEE Trans. Circuits Syst. II, vol. 46, no. 1, pp. 56–62, Jan. 1999.
[40] J. Jansson, A. Mantyniemi, and J. Kostamovaara, “A CMOS time-to-digital converter with better than 10 ps single-shot precision,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1286–1296, June 2006.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *