帳號:guest(3.235.46.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林立穎
作者(外文):Lin, Lee-Ying
論文名稱(中文):應用於生醫植入式系統之0.18μm互補式金氧半製程中高壓神經刺激電路開發
論文名稱(外文):A High-Voltage Neuron Stimulator in 0.18μm CMOS Process for Biomedical Implantable Device
指導教授(中文):鄭桂忠
指導教授(外文):Tang, Kea-Tiong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:9661528
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:81
中文關鍵詞:神經刺激電路高電壓裝置生醫植入式裝置摺疊電壓浮動電壓
外文關鍵詞:neuron stimulatorhigh-voltage driverbiomedical implantable devicevoltage clothingfolding-voltage technique
相關次數:
  • 推薦推薦:0
  • 點閱點閱:156
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
近幾年來,生醫電子已經越來越受到大家的注意以及重視,許多研究報告顯示,生醫電子可以用來治療許多已知的疾病,並且改善病人的生活品質,因此,有許多研究開始討論如何製作植入式生醫系統,然而要設計一個植入式生醫系統必頇面臨許多挑戰,其中一些必要的條件是安全、小體積和低功耗,現今,隨著科技進步,融合離散電路的生醫晶片正符合植入式生醫系統的要求,也因此受到廣泛的研究討論。對於生醫晶片而言,很重要的一部分是神經電刺激系統,神經電刺激系統可經由充放電的機制,用來模擬並觸發神經細胞的動作電位,如此一來即可建構出電子系統與生物體本身的溝通橋樑,將電子信號轉換成生物體能接收的神經訊號,藉以輔助或者取代生物體本身喪失功能的部分。 本論文所主要研究的內容即是關於神經刺激電路的設計,一個好的神經刺激電路,必頇能輸出高對稱性的Bi-Phase波形,以及精準的控制刺激電流的強度與持續時間,還要考慮到維持電荷的平衡。隨著製程技術的演進,基於新製程能提供較高的電路集成密度,能降低製造成本,以及節省耗能的原則下,會希望使用新的製程技術取代舊有的,然而,由於生物體本身神經細胞的差異性較大,並且擁有高阻抗的輸出阻值,加上電流需要量大的緣故,導致儘管利用新製程技術,降低了功耗,免不了還是要整合高電流輸出的高壓神經刺激電路,因此,本論文即是針對高電壓的神經刺激電路做進一步的探討及研究,並提出了「浮動電壓」以及「折疊電壓」兩項創新的思考方向,並設計高壓感測電路,配合控制摺疊電壓的參考電位,如此一來可將低功耗的數位控制電路以及需要高壓環境的刺激電路整合在一塊,達成ASIC的概念,本論文最後利用TSMC 0.18μm 1P6M CMOS製程技術,將想法轉化為實際電路,製造出晶片並加以驗證,再依據量測結果與模擬比對之後並加以探討,其中特別針對高壓操作環境下,高壓對於晶片本身的影響破壞做分析討論,最後對本次的晶片設計提出改良意見,以提供後續研究做為參考資料。
Bio-medical implantable devices have drawn more and more attention in recent years. Extensive studies in neuroscience prove that neural stimulation techniques may cure or at least improve some diseases caused by neural abnormal discharge or disability. However, two of the major challenges of implantable devices are combining a high-voltage driver and low-voltage digital control in a single chip, and accommodating large voltages in smaller feature size technology. This thesis presents a new stimulator circuit structure to address these problems, using a novel voltage clothing design to reduce the voltage supply from 20V to 12V. A new folding-voltage technique solves the reliability issue. The proposed design has been fabricated with TSMC 0.18μm 1P6M CMOS technology.
摘 要 i
ABSTRACT ii
誌 謝 iii
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1研究背景 1
1.2 研究動機 3
1.2.1神經元細胞與動作電位簡介 3
1.2.2 神經刺激電路簡介 5
1.2.3刺激器的需求 6
1.2.4高壓神經刺激電路之困難與挑戰 8
1.3 章節簡介 9
第二章 文獻回顧 10
2.1神經刺激電路之種類介紹 10
2.2高壓神經刺激電路之實施案例 15
第三章 研究之高壓刺激電路架構與創新概念 20
3.1 創新概念 20
3.2電路架構 22
3.2.1電流鏡 23
3.2.2 輸出緩衝電路 25
3.2.3 電流式數位類比轉換器 26
3.2.4 電壓感測電路與控制電路 28
3.2.5 高壓電路開關 35
3.2.6 參考電位切換電路 35
3.2.7 殘餘電荷消除電路 38
3.3 電路模擬結果 39
第四章 量測結果與討論 50
4.1 測試鍵電路量測結果 50
4.2 高電壓環境下對電路的影響 52
4.3高壓神經刺激電路量測結果8V & 9V & 10V 56
4.4 量測結果討論 69
第五章 結論 74
5.1 高壓神經刺激電路 74
5.2未來工作 75
參考文獻 76
[1] Djourno A, Eyriès C. 'Prothèse auditive par excitation électrique à distance du nerf sensoriel à l'aide d'un bobinage inclus à demeure.' In: La Presse Médicale 65 no.63. 1957.
[2] Djourno A, Eyriès C, 'Vallencien B. De l'excitation électrique du nerf cochléaire chez l'homme, par induction à distance, à l'aide d'un micro-bobinage inclus à demeure.' CR de la société.de biologie. 423-4. March 9, 1957.
[3] Berruecos, Pedro. Cochlear implants: An international perspective - Latin American countries and Spain. Audiology. Hamilton: Jul/Aug 2000. Vol. 39, 4:221-225
[4] Eisen MD, 'Djourno, Eyries, and the first implanted electrical neural stimulator to restore hearing.' in: Otology and Neurotology. 2003 May;24(3):500-6.
[5] Johnston, Trevor. Whither the Deaf Community In 'American Annals of the Deaf' (volume 148 no. 5),
[6] itovsky, Ruth Y., et al. "Bilateral Cochlear Implants in Children: Localization Acuity Measured with Minimum Audible Angle." Ear & Hearing, 2006; 27; 43-59.
[7] Officiers, P.E., et. a. "International Consensus on bilateral cochlear implants and bimodal stimulation." Acta Oto-Laryngologica, 2005; 125; 918-919.
[8] Reefhuis J, et al. Risk of Bacterial Meningitis in Children with Cochlear Implants, USA 1997-2002. New England Journal of Medicine, 2003; 349:435-445.
[9] Spencer, Patricia Elizabeth and Marc Marschark. Cochlear Implants: Issues and Implications. In 'Oxford Handbook of Deaf Studies, Language and Education', ed. Marc Marschark and Patricia Elizabeth Spencer, 434-450. Oxford: Oxford University Press, 2003.
[10] Furman S, Szarka G, Layvand D, "Reconstruction of Hyman's second pacemaker", Pacing Clin Electrophysiol.2005 May;28(5):446-453
[11] Bernstein A, Daubert J, Fletcher R, Hayes D, Lüderitz B, Reynolds D, Schoenfeld M, Sutton R (2002). "The revised NASPE/BPEG generic code for antibradycardia, adaptive-rate, and multisite pacing. North American Society of Pacing and Electrophysiology/British Pacing and Electrophysiology Group". Pacing Clin Electrophysiol 25 (2): 260-4
[12]Cleland JGF, Daubert J-C, Erdmann E, et al; the Cardiac Resynchronization — Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005 March 7
[13]Cleland J, Daubert J, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L (2005). "The effect of cardiac resynchronization on morbidity and mortality in heart failure". N Engl J Med 352 (15): 1539-49
[14] Bristow M, Saxon L, Boehmer J, Krueger S, Kass D, De Marco T, Carson P, DiCarlo L, DeMets D, White B, DeVries D, Feldman A (2004). "Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure". N Engl J Med 350 (21): 2140-50
[15] Wilkoff BL, Cook JR, Epstein AE, et al.: Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual-chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA 2002, 288: 3115–3123
[16]Chun DW, Heier JS, Raizman MB. (2005). "Visual prosthetic device for bilateral end-stage macular degeneration.". Expert Rev Med Devices. 2 (6): 657-65
[17]Lane SS, Kuppermann BD, Fine IH, Hamill MB, Gordon JF, Chuck RS, Hoffman RS, Packer M, Koch DD. (2004). "A prospective multicenter clinical trial to evaluate the safety and effectiveness of the implantable miniature telescope.". Am J Ophthalmol. 137 (6): 993-1001.
[18]Lane SS, Kuppermann BD. (2006). "The Implantable Miniature Telescope for macular degeneration.". Curr Opin Ophthalmol. 17 (1): 94-8
[19]J.D. Loudin, D.M. Simanovskii, K. Vijayraghavan, C.K. Sramek, A.F. Butterwick, P. Huie, G.Y. McLean, and D.V. Palanker (2007). "Optoelectronic retinal prosthesis: system design and performance". J Neural Engineering 4: S72–S84
[20]AT Villavicencio, JC Leveque, L Rubin, K Bulsara, JP Gorecki (2000). "Laminectomy versus percutaneous electrode placement for spinal cord stimulation". Neurosurgery 46 (2): 399-405; discussion 405-6.
[21]JC Oakley, JP Prager (2002). "Spinal cord stimulation: mechanisms of action". Spine 27: 2574-83
[22]MS. Matharu, T, Bartsch N Ward, RS Frackowiak, R Weiner, PJ Goadsby (2004). "Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study". Brain 127 (Pt 1): 220-30
[23]RB North, DH Kidd, F Farrokhi, SA Piantadosi (2005). "Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial". Neurosurgery 56 (1): 98-106; discussion 106-7
[24]RA Schmidt, A Jonas, KA Oleson, RA Janknegt, MM Hassouna, SW Siegel, PE van Kerrebroeck. Sacral nerve stimulation for treatment of refractory urinary urge incontinence. Sacral nerve study group. J Urol 1999 Aug;16(2):352-357
[25]GS Brindley, CE Polkey, DN Rushton (1982): Sacral anterior root stimulator for bladder control in paraplegia. Paraplegia 20: 365-381
[26]S. P. Levine, J. E. Huggins, S. L. BeMent, R. K. Kushwaha, L. A. Schuh, M. M. Rohde, E. A. Passaro, D. A. Ross, K. V. Elisevich, and B. J. Smith, "A direct brain interface based on event-related potentials," IEEE Trans Rehabil Eng, vol. 8, pp. 180-5, 2000
[27]J Wessberg, CR Stambaugh, JD Kralik, PD Beck, M Laubach, JK Chapin, J Kim, SJ Biggs, MA Srinivasan, MA Nicolelis. (2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 16: 361-365
[28]J.M Carmena, M.A. Lebedev, R.E. Crist, J.E. O’Doherty, D.M. Santucci, , D.F. Dimitrov, P.G. Patil , C.S. Henriquez, M.A.L. Nicolelis, (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biology, 1: 193-208
[29]M.A. Lebedev, J.M. Carmena , J.E. O’Doherty, M. Zacksenhouse, C.S. Henriquez , J.C. Principe, M.A.L. Nicolelis, (2005) Cortical ensemble adaptation to represent actuators controlled by a brain machine interface. J. Neurosci. 25: 4681-4693
[30]M.D. Serruya, N.G. Hatsopoulos, L. Paninski, M.R. Fellows, J.P. Donoghue,(2002) Instant neural control of a movement signal. Nature 416: 141-142
[31] M. Ortmanns, A. Rocke, M. Gehrke, H.-J. Tiedtke, “A 232-Channel Epiretinal Stimulator ASIC” JSSC Volume 42, Issue 12, Page(s):2946 – 2959 ,Dec. 2007.
[32] S.K. Kelly, J. Wyatt, “A power-efficient voltage-based neural tissue stimulator with energy recovery” Solid-State Circuits Conference, 2004. Page(s): 228 -232
[33] M. Schwarz, M. Maschmann “Area saving stimulator cells for multielectrode arrays featuring adaptive waveform generation and monitoring” Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE Volume 2, 1-5 Sept. 2004, Page(s):4314 – 4317. 524 Vol.1
[34] W. Liu, K. Vichienchom, M. Clements, S.C. DeMarco, C. Hughes, E. McGucken, M.S. Humayun, E. De Juan, J.D. Weiland, R. Greenberg, “A neuro-stimulus chip with telemetry unit for retinal prosthetic device” JSSC Volume 35, Issue 10, Page(s):1487 – 1497, Oct. 2000.
[35]P.R. Singh; Wentai Liu; M. Sivaprakasam; M.S. Humayun ; J.D. Weiland ; “A matched biphasic microstimulator for an implantable retinal prosthetic device” IEEE International Symposium on Circuits and Systems, 2004 Page(s): IV - 1-4 Vol.4
[36] Sivaprakasam Mohanasankar; M. Sivaprakasam; Wentai Liu; Guoxing Wang; J. Weiland; M. Humayun; “Towards a Modular 32 x 32 Pixel Stimulator for Retinal Prosthesis” Life Science Systems and Applications Workshop, 2006. IEEE/NLMJuly 2006 Page(s):1 - 2
[37]N. Dommel, Y.T. Wong, T. Lehmann, P. Byrnes-Preston, N.H. Lovell, G.J. Suaning, “Microelectronic Retinal Prosthesis: II. Use of High-Voltage CMOS in Retinal Neurostimulators” Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE Aug. 30 2006-Sept. 3 2006, Page(s):4651 – 4654,
[38] Song Guo; Hoi Lee; ”Biphasic-current-pulse self-calibration techniques for monopolar current stimulation ” Biomedical Circuits and Systems Conference, 2009. BioCAS 2009. , Page(s): 61 - 64
[39] M. Ortmanns; N. Unger; A. Rocke; M. Gehrke; H.J. Tiedtke, “A retina stimulator ASIC with 232 electrodes, custom ESD protection and active charge balancing” Circuits and Systems, IEEE International Symposium on, 2006
[40] K. Gosalia, J. Weiland, M. Humayun, G. Lazzi, Thermal elevation in the human eye and head due to the operation of a retinal prosthesis, Biomedical Engineering, IEEE Transactions on, Aug. 2004 Volume: 51 , Issue: 8 Page(s): 1469 - 1477
[41] E.K.F. Lee, A. Lam, A Matching Technique for Biphasic Stimulation Pulse Circuits and Systems, IEEE International Symposium on, 2007, Page(s): 817 - 820
[42] E. Lee, E. Matei, J. Gord, P. Hess, P. Nercessian, H. Stover, Li. Taihu, J. Wolfe, A Biomedical Implantable FES Battery-Powered Micro-Stimulator
Circuits and Systems I: Regular Papers, IEEE Transactions on, Volume: 56 , Issue: 12 Page(s): 2583 – 2596. 2009
[43] B.K. Thurgood, D.J. Warren, N.M. Ledbetter, G.A. Clark, R.R. Harrison, A Wireless Integrated Circuit for 100-Channel Charge-Balanced Neural Stimulation , Volume: 3 , Issue: 6 , Biomedical Circuits and Systems, IEEE Transactions on, 2009, Page(s): 405 – 414
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *