帳號:guest(44.222.186.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇煥傑
作者(外文):Su, Huan-Chieh
論文名稱(中文):一種以奈米碳管電極材料製作之新穎神經探針
論文名稱(外文):Carbon Nanotubes as an Electrode Material for Novel Neural Probes
指導教授(中文):游萃蓉
指導教授(外文):Yew, Tri-Rung
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:947521
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:122
中文關鍵詞:奈米碳管神經探針微波處理電漿處理神經訊號紀錄
外文關鍵詞:Carbon nanotubesNeural probeMicrowave treatmentPlasma treatmentNeural signals recording
相關次數:
  • 推薦推薦:0
  • 點閱點閱:136
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
傳統的神經探針已被廣泛應用於研究腦神經的電生理功能,然而目前發展的多種傳統微電極探針,仍無法長期可靠地偵測神經細胞活動,及區域性、選擇性地刺激神經組織,其主要歸因於下列缺點: (1)電極尺寸仍過大,易傷害細胞,(2)目前電極多用金屬材質電極,在低頻區段具高阻抗,(3)長期植入後會引發局部發炎或免疫相關反應。為解決上述問題,本研究將利用奈米碳管(carbon nanotubes)當作探針來取代傳統的神經探針。
本論文主要研究一種新穎的三維錐狀奈米碳管探針(cone-shaped 3D carbon nanotube probe),以運用於神經訊號之記錄。奈米碳管是利用催化化學氣相沉積法(catalytic thermal chemical vapor deposition)合成於矽尖錐上,此三維結構探針和一般二維探針在同樣投影面積相比下,具有較大的奈米碳管表面積,在神經訊號量測上更具有較高的空間解析度。此外本論文也利用水電漿(H2O plasma)和氧電漿(O2 plasma)處理,來修飾奈米碳管的表面特性。及以微波(microwave)處理,來增進奈米碳管和其基板的附著性。由電化學量測結果顯示,經由氧電漿處理過後的奈米碳管具有較低的介面阻抗(~ 64.5 □□mm-2)和較高的介面電容(~ 2.5 mF cm-2)。本論文更進一步利用經氧電漿處理的奈米碳管探針來偵測螯蝦的神經訊號,結果顯示本研究所研發的經氧電漿處理的奈米碳管探針,具有較佳的量測空間解析度和極佳的電化學特性,對於神經訊號記錄應用具有極大的潛力。
Traditional neural electrodes have been employed widely to investigate the physiological functions of the brain. However, various micro-electrode probes currently developed still cannot reliably detect the activity of the neural cell for a long term, and cannot stimulate the neural tissues regionally and selectively. This is mainly due to that the probe size is still too large, the impedance is too high for metallic electrodes at low frequency region, and the long time implantation will induce tissue inflammation. To resolve above issues, this research is to study carbon nanotubes (CNTs) as an neural electrode material to replace traditional neural electrodes.
A novel cone-shaped 3D carbon nanotube (CNT) probe is proposed as an electrode for the applications in neural recording in this work. The electrode consists of CNTs synthesized on the cone-shaped Si (cs-Si) tip by catalytic thermal chemical vapor deposition (CVD). This probe exhibits a larger CNT surface area with the same footprint area and higher spatial resolution of neural recording compared to planar-type CNT electrodes. An approach of improving the CNT characteristics by H2O or O2 plasma treatment to modify the CNT surface will be also presented. In addition, the effect of microwave (MW) treatment to improve the adhesion of carbon nanotubes (CNTs) to a substrate is examined. According to electrochemical characterization, O2 plasma-treated 3D CNT (OT-CNT) probes revealed low impedance per unit area (~ 64.5 □□mm-2) at 1 kHz and high specific capacitance per unit area (~ 2.5 mF cm-2). Furthermore, the OT-CNT probes were employed to record the neural signals of a crayfish nerve cord. The findings in this work suggest that OT-CNT probes exhibit potential advantages of high spatial resolution and superb electrochemical properties which are suitable for neural recording applications.
摘要 i
Abstract iii
誌謝 v
Contents viii
List of Figures xii
List of Tables xviii
1 Introduction 1
2 Literature Review 4
2.1 Conventional Electrodes 4
2.1.1 Metal Microwire Electrode 5
2.1.2 Michigan Electrode 5
2.1.3 Utah Electrode 6
2.1.4 Summary of Conventational Electrodes 8
2.2 Basics of CNTs 9
2.2.1 Geometric Structures of CNTs 9
2.2.2 Properties of CNTs 12
2.3 CNT Electrode 14
2.4 Comparison between Iridium Oxide and CNT Electrode 17
2.5 Improve the Adhesion of CNTs to A Substrate 19
3 Experimental Procedures and Instruments 21
3.1 Experimental Procedures 21
3.1.1 Experimental Flow 21
3.1.2 Substrate Preparation 22
3.1.3 CNT Growth by Chemical Vapor Deposition 24
3.1.4 Fabrication of 3D CNT Electrode 26
3.1.5 Microwave Treatment on CNTs 29
3.1.6 Surface Treatment on CNTs 30
3.1.7 Adhesion Test 32
3.2 Experimental Instruments 33
3.2.1 Scanning Electron Microscope (SEM) 33
3.2.2 Transmission Electron Microscopy (TEM) and Energy Dispersion Spectrometer (EDS) 34
3.2.3 Micro-Raman Spectroscopy (m-Raman) 35
3.2.4 X-ray Photoelectron Spectroscopy (XPS) 36
3.2.5 Contact Angle System 37
3.2.6 Electrochemical Impedance Spectroscopy (EIS) & Cyclic Voltammetry (CV) 37
3.3 Biocompatibility Tests and Neural Signals Detection 38
3.3.1 Biocompatibility Tests 38
3.3.2 Neural Signals Detection 39
4 Optimization of Carbon Nanotube Growth 41
4.1 CNT Growth Using Ni-based Catalyst 41
4.1.1 The Effect of CNT Synthesis Temperature 41
4.1.2 The Effect of Ti Thickness 43
4.1.3 SEM and Raman Spectrum of CNT Growth 44
4.2 CNT Growth Using Fe-based Catalyst 45
4.3 Summary 47
5 Improving the Adhesion of Carbon Nanotubes Using Microwave Treatment 48
5.1 Microwave Treatment Process Optimization 49
5.1.1 The Effect of Microwave Treatment on CNT Adhesion 49
5.1.2 Graphitization of As-grown CNTs and Microwave-treated CNTs 52
5.1.3 CNT Adhesion Test by Inserting into Agar Gel 53
5.2 Electrochemical Properties of As-grown and Microwave-treated CNTs 54
5.3 Mechanism of CNT Adhesion Improvement Through Microwave Treatment 55
5.3.1 Transmission Electron Microscopy (TEM) and Energy Dispersion Spectrometer (EDS) Analyses 55
5.3.2 Model of CNT Adhesion Improvement Through Microwave Treatment 58
5.4 Summary 60
6 Hydrophilic Enhancement by Plasma Treatment 61
6.1 CNT Surface Treatment by H2O Plasma 61
6.1.1 CNT Surface Morphology after H2O Plasma Treatment 61
6.1.2 CNT Surface Wettability after H2O Plasma Treatment 63
6.1.3 Long-term Stability of Hydrophilic CNTs Treated by H2O Plasma 64
6.1.4 Graphitization of As-grown CNTs and H2O Plasma-treated CNTs 65
6.1.5 Electrochemical Properties of As-grown CNTs and H2O Plasma-treated CNTs 67
6.1.6 XPS Analyses of H2O Plasma-treated CNTs 68
6.1.7 Quantify the Degree of Hydrophilicity for CNTs Based on Interface Impedance 69
6.1.8 Amorphous Carbon Removed by H2O Plasma Treatment 71
6.2 CNT Surface Treatment by O2 Plasma 74
6.2.1 Comparison between O2 Plasma Treatment and H2O Plasma Treatment 74
6.2.2 XPS Analyses of O2 Plasma-treated CNTs 76
6.3 Summary 77
7 A Cone-shaped 3D Carbon Nanotube Probe for Neural Recording 78
7.1 Physical Characterization of 3D CNT Probes 78
7.1.1 SEM Images of 3D CNT Probes 78
7.1.2 HRTEM Images of 3D CNT Probes 80
7.1.3 XPS Analyses of 3D CNT Probes 81
7.2 Electrochemical Characterization of 3D CNT Probes 84
7.3 Neural Signal Recording of 3D CNT Probes 89
7.4 Comparison between 3D CNT Probe and Other CNT Electrodes 93
7.5 Biocompatibility of CNT Probes 95
7.6 Summary 98
8 Conclusion 99
9 Future Prospects 102
Reference 107
Curriculum Vitae 119
List of Publications 120
Chapter 1
[1.1] D. H. Hubel, Science, 1957, 125, 549-550.
[1.2] G. E. Loeb, R. A. Peck, J. Martyniuk, Journal of Neuroscience Methods, 1995, 63, 175-183.
[1.3] K. D.Wise, Engineering in Medicine and Biology Magazine, IEEE, 2005, 24, 22-29.
[1.4] R. A. Normann, Nature Clinical Practice Neurology, 2007, 3, 444-452.
[1.5] X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, P. Dario, Journal of the Peripheral Nervous System, 2005, 10, 229-258.
[1.6] F. Keohan, X. F. Wei, A. Wongsarnpigoon, E. Lazaro, J. E. Darga, W. M. Grill, Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1057-1073.
[1.7] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H. Caplan, A. Branner, D. Chen, R. D.Penn, J. P. Donoghue, Nature, 2006, 442, 164-171.
[1.8] D. M. Taylor, S. I. Tillery, A. B. Schwartz, Science, 2002, 296, 1829-1832.
[1.9] J. K. Chapin, K. A. Moxon, R. S. Markowitz, M. Nicolelis, Nature Neuroscience, 1999, 2, 664-670.
[1.10] A. B. Schwartz, X. T. Cui, D. J. Weber, D. W. Moran, Neuron, 2006. 52, 205-220.
[1.11] G. E. Loeb, R. A. Peck, J. Martyniuk, Journal of Neuroscience Methods, 1995. 63, 175-183.
[1.12] N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, L. Ballerini, Advanced Materials, 2009, 21, 3970-4004.
[1.13] P. K.Campbell, K. E. Jones, R. A. Normann, Biomedical Sciences Instrumentation, 1990, 26, 161-165.
[1.14] L. B. Merabet, J. F. Rizzo, A. Amedi, D. C. Somers, A. Pascual-Leone, Nature Reviews Neuroscience, 2005, 6, 71-77.
[1.15] F. Patolsky, B. P. Timko, G. Yu, Y. Fang, A. B. Greytak, G. Zheng, C. M. Lieber, Science, 2006, 313, 1100-1104.
[1.16] M. A. Lebedev, M. A. L. Nicolelis, Trends in Neurosciences, 2006, 29, 536-546.
[1.17] C. H. Chen, D. J. Yao, S. H. Tseng, S. W. Lu, C. C. Chiao, S. R. Yeh, Biosensors and Bioelectronics, 2009, 24, 1911-1917.
[1.18] J. Li, H. T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, M. Meyyappan, Nano Letters, 2003,3, 597-602.
[1.19] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, Physical Review B, 1998, 58, 14013-14019.
[1.20] M. Musameh, N. S. Lawrence, J. Wang, Electrochemistry Communications, 2005, 7, 14-18.
[1.21] S. Shanmugam, A. Gedanken, Electrochemistry Communications, 2006, 8, 1099-1105.
[1.22] J. J. Gooding, Electrochimica Acta, 2005, 50, 3049-3060.
[1.23] V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, L. Ballerini, Nano Letters, 2005, 5, 1107-1110.
[1.24] M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, N. A. Kotov, Advanced Materials, 2006, 18, 2975-2979.
[1.25] A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro, H. Markram, M. Prato, L. Ballerini, The Journal of Neuroscience, 2007, 27, 6931-6936.
[1.26] K. Wang, H. A. Fishman, H. Dai, J. S Harris, Nano Letters, 2006, 6, 2043-2048.
[1.27] T. Gabay, M. Ben-David, I. Kalifa, R. Sorkin, Z. R. Abrams, E. Ben-Jacob, Y. Hanein, Nanotechnology, 2007, 18, 035201-1-6 (6pp).
[1.28] E. W. Keefer, B. R. Botterman, M. I. Romero, A. F. Rossi, G. W. Gross, Nature Nanotechnology, 2008, 3, 434-439.

Chapter 2
[2.1] D. H. Hubel, Science, 1957, 125, 549-550.
[2.2] G. E. Loeb, R. A. Peck, J. Martyniuk, Journal of Neuroscience Methods, 1995, 63, 175-183.
[2.3] K. D.Wise, Engineering in Medicine and Biology Magazine, IEEE, 2005, 24, 22-29.
[2.4] R. A.Normann, Nature Clinical Practice Neurology, 2007, 3, 444-452.
[2.5] K. C. Cheung, Biomedical Microdevices, 2007, 9, 923-938.
[2.6] M. A. L. Nicolelis, D. Dimitrov, J. M. Carmena, R. Crist, G. Lehew, J. D. Kralik, S. P. Wise, PNAS, 2003, 11041-11046.
[2.7] K.D. Wise, J. B. Angell, IEEE Transactions on Biomedical Engineering, 1975, BME-22, 212-219.
[2.8] K. D.Wise, J. B. Angell, A. Starr, IEEE Transactions on Biomedical Engineering, 1970, BME-17, 238-247.
[2.9] Y. T. Kim, Y. Y. Kim, C. H. Jun, Part of the Symposium on Design, Test, and Microfabrication of MEMS and MOEMS. Conference, Paris, France, 1999, 3680, 924-930.
[2.10] J. Csicsvari, D. A. Henze, B. Jamieson, K. D. Harris, A. Sirota, P. Bartho, K. D. Wise, G. Buzsaki, Journal of Neurophysiology, 2003, 90, 1314-1323.
[2.11] K. Najafi, J. F. Hetke, IEEE Transactions on Biomedical Engineering, 1990, 37, 474-481.
[2.12] D. R. Kipke, International Symposium on Circuits and Systems, ISCAS, 2004.
[2.13] W. L. C. Rutten, Annu. Rev. Biomed. Eng., 2002, 4, 407-452.
[2.14] A. N. Badi, T. R. Kertesz, R. K. Gurgel, C. Shelton, R. A. Normann, The Laryngoscope, 2003, 113, 833-842.
[2.15] A. Branner, R. B. Stein, E. Fernandez, Y. Aoyagi, R. A. Normann, IEEE Transactions on Biomedical Engineering, 2004, 51, 146-157.
[2.16] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H. Caplan, A. Branner, D. Chen, R. D.Penn, J. P. Donoghue, Nature, 2006, 442, 164-171.
[2.17] S. Iijima, Nature, 1991, 354, 56-58.
[2.18] Y. T. Wu, H. C. Su, C. M. Tsai, K. L. Liu, G. D. Chen, R. H. Huang, and T. R. Yew, Applied Physical Letters, 2008, 93,023108-023111.
[2.19] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of fullerences & carbon Nanotubes. 2000, San Diego: Academic Press.
[2.20] M. S. Dresselhaus, G. Dresselhaus, R. Satio, Carbon, 1995, 33, 883-891.
[2.21] T. Durkop, S. A. Getty, E. Cobas, M. S. Fuhrer, Nano Letts, 2004, 4, 35-39.
[2.22] Z. Yao, C. L. Kane, C. Dekker, Physical Review Letters, 2000, 84, 2941-2944.
[2.23] J. Hone, M. Whitney, A. Zettl, Synthetic Metals, 1999, 103, 2498-2499.
[2.24] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes. Academic, New York, 1996, 765-802.
[2.25] J. M. Bonard, J. P. Salvetat, T. Stockli, W. A. de Heer, L. Forro, A, Chatelain. Applied Physics Letters, 1998, 73, 918-920.
[2.26] K. B. K. Teo, C. Singh, M. Chhowalla, W. I. Milne, Encyclopedia of Nanoscience and Nanotechnology, 2003, 1.
[2.27] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Nature, 1998, 391, 62-64.
[2.28] S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature, 1998, 393, 49-52.
[2.29] R. Martel, T. Schmidt, H. R. Shea, T, Hertel, P. Avouris, Applied Physics Letters, 1998, 73,2447-2449.
[2.30] S. C. Lim, L.C. Choi, H. J. Jeong, Y. M. Shin, K. H. An, D. J. Bae, et al., Advanced Materials, 2001, 13, 1563-1567.
[2.31] Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig, R. P. H. Chang, Applied Physics Letters, 1998, 72, 2912-2913.
[2.32] K. Besteman, J. O. Lee, F. G. M. Wiertz, H. A. Heering, C. Dekker, Nano Letters, 2003, 3, 727-730.
[2.33] H. J. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley. Nature, 1996, 384,147-150.
[2.34] K. Wang, H. A. Fishman, H. J. Dai, J. S. Harris, Nano Letters, 2006, 6, 2043-2048.
[2.35] T. Gabay, M. Ben-David, I. Kalifa, R. Sorkin, Z. R. Abrams, E. Ben-Jacob, Y. Hanein, Nanotechnology, 2007, 18, 035201-1-6 (6pp).
[2.36] J. Li, H. T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, M. Meyyappan, Nano Letters, 2003, 3, 597-602.
[2.37] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, Physical Review B, 1998, 58, 14013-14019.
[2.38] M. Musameh, N. S. Lawrence, J. Wang, Electrochemistry Communications, 2005, 7, 14-18.
[2.39] S. Shanmugam, A. Gedanken, Electrochemistry Communications, 2006, 8, 1099-1105.
[2.40] J. J. Gooding, Electrochimica Acta, 2005, 50, 3049-3060.
[2.41] V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, L. Ballerini, Nano Letters, 2005, 5, 1107-1110.
[2.42] M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, N. A. Kotov, Advanced Materials, 2006, 18, 2975-2979.
[2.43] A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro, H. Markram, M. Prato, L. Ballerini, The Journal of Neuroscience, 2007, 27, 6931-6936.
[2.44] N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, L. Ballerini, Advanced Materials, 2009, 21, 3970-4004.
[2.45] F. Keohan, X. F. Wei, A. Wongsarnpigoon, E. Lazaro, J. E. Darga, W. M. Grill, Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1057-1073.
[2.46] S. R. Yeh, Y. C. Chen, H. C. Su, T. R. Yew, H. H. Kao, Y. T. Lee, T. A. Liu, H. Chen, Y. C. Chang, P. Chang, H. Chen, Langmuir, 2009, 25, 7718-7724.
[2.47] J. M. Nugent, K. S. V. Santhanam, A. Rubio, P. M. Ajayan, Nano Letters, 2001, 1, 87-91.
[2.48] B. Wessling, A. Besmehn, W. Mokwa, U. Schnakenberg, Journal of the Electrochemical Society, 2007, 154, F83-F89.
[2.49] I. S. Lee, C. N. Whang, J. C. Park, D. H. Lee, W. S. Seo, Biomaterials, 2003, 24, 2225-2231.
[2.50] M. P. Mattson, R. C. Haddon, A. M. Rao, Journal of Molecular Neuroscience, 2000, 14, 175-182.
[2.51] M. K. Gheith, V. A. Sinani, J. P. Wicksted, R. L. Matts, N. A. Kotov, Advanced Materials, 2005, 17, 2663-2670.
[2.52] H. Hu, Y. Ni, V. Montana, R. C. Haddon, V. Parpura, Nano Letters, 2004, 4, 507-511.
[2.53] H. Hu, Y. Ni, S. K. Mandal, V. Montana, B. Zhao, R. C. Haddon, V. Parpura, Journal of Physical Chemistry B, 2005, 109, 4285-4289.
[2.54] E. W. Keefer, B. R. Botterman, M. I. Romero, A. F. Rossi, G. W. Gross, Nature Nanotechnology, 2008, 3, 434-439.
[2.55] D. B. McCreery, W. F. Agnew, T. G. Yuen, L. Bullara, IEEE Transactions on Biomedical Engineering, 1990, 37, 996.
[2.56] S. Negi, R. Bhandari, L. Rieth, R. V. Wagenen, F. Solzbacher, Journal of Neuroscience Methods, 2010, 186, 8-17.
[2.57] I. S. Lee, C. N. Whang, J. C. Park, D. H. Lee, W. S. Seo, Biomaterials, 2003, 24, 2225-2231.
[2.58] R. D. Meyer, S. F. Cogan, T. H. Nguyen, R. D. Rauh, IEEE Transactions on Neural System and Rehabilitation Engineering, 2001, 9, 2-11.
[2.59] S. F. Cogan, A. A. Guzelian, W. F. Agnew, T. G. H. Yuen, D. B. McCreery, Journal of Neuroscience Methods, 2004, 137, 141-150.
[2.60] H. Specht, F. Krueger, H. J. Wachter, O. Keitel, C. Leitold, M. Frericks, Med. Device Mater. III, Proc. 3rd Mater. Processes Med. Devices Conf., 2006, 169.
[2.61] I. S. Lee, C. N. Whang, Y. H. Lee, G. H. Lee, B. G. Park, J. C. Park, W. S. Seo, F. Z. Chi, Thin Solid Films, 2005, 475, 332-336.
[2.62] Y. Zhao, T. Tong, L. Delzeit, A. Kashani, M. Meyyappan, A. Majumdar, Journal of Vacuum Science & Technology B, 2006, 24, 331-335.
[2.63] Y. Ominami, Q. Ngo, M. Suzuki, A. J. Austin, C. Y. Yang, A. M. Cassell, et al., Applied Physics Letters, 2006, 89, 263114-263116.
[2.64] Z. X. Chen, Q. Zhang, P. X. Lan, B. J. Zhu, T. Yu, G. C. Cao, et al., Nanotechnology, 2007, 18, 265702-1-6(6pp).
[2.65] S. C. Lim, H. K. Choi, H. J. Jeong, Y. I. Song, G. Y. Kim, K. T. Jung, et al., Carbon, 2006, 44, 2809-2815.
[2.66] H. Nishijima, S. Kamo, S. Akita, Y. Nakayama, K. I. Hohmura, S. H. Yoshimura, et al., Applied Physics Letters, 1999, 74, 4061-4063.
[2.67] L. B. Zhu, Y. Y. Sun, D. W. Hess, C. P. Wong, Nano Letters, 2006, 6, 243-247.

Chapter 3
[3.1] E. H. Hong, K. H. Lee, S. H. Oh, C. G. Park, Advanced Materials, 2002, 14, 676-679.
[3.2] A. Wadhawan, D. Garrett, J. M. Perez, Applied Physics Letters, 2003, 83, 2683-2685.
[3.3] Y. Wang, Z. Iqbal, S. Mitra, Carbon, 2005, 43, 1015-1020.
[3.4] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, et al., Science, 1998, 282, 1105-1107.
[3.5] A. Okita, Y. Suda, A. Oda, J. Nakamura, A. Ozeki, K. Bhattacharyya, et al., Carbon, 2007, 45, 1518-1526.
[3.6] M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho, R. Saito, Carbon, 2002, 40, 2043-2061.
[3.7] M. Endo, Y. A. Kim, Y. Fukai, T. Hayashi, M. Terrones, H. Terrones, et al., Applied Physics Letters, 2001, 79, 1531-1533.
[3.8] J. C. Vickerman, “Surface Analysis-The Principle Techniques”, John Wiley & Sons 1997.
[3.9] W. Y. Cheng, W. L. Hsu, H. H. Cheng, Z. H. Huang, Y. C. Chang, Analytical. Biochemistry, 2009, 386, 105-112.
[3.10] S. R. Yeh, Y. C. Chen, H. C. Su, T. R. Yew, H. H. Kao, Y. T. Lee, T. A. Liu, H. Chen, Y. C. Chang, P. Chang, H. Chen, Langmuir, 2009, 25, 7718-7724.
[3.11] S. H. Tseng, L. Y. Tsai, S. R. Yeh, The Journal of Neuroscience, 2008, 28, 7165-7173.

Chapter 4
[4.1] S. Sedky, A. Witvrouw, H. Bender, K. Baert, IEEE Transactions on electron device, 2001, 48, 377-385.
[4.2] D. Bandyopadhyay, R. C. Sharma, N. Chakraborti, The Ti-Ni-C System. J Phase Equilibria, 2000, 21, 186-191.
[4.3] S. Sato, A. Kawabata, D. Kondo, M. Nihei, Y. Awano, Chemical Physics Letters, 2005, 402, 149-154.

Chapter 5
[5.1] T. D. B. Nguyen-Vu, H. Chen, A. M. Cassell, R. Andrews, M. Meyyappan, J, Li, Small, 2006, 2, 89-94.
[5.2] R. T. K. Baker, P. S. Harris, Chemistry and Physics of Carbon. Marcel Dekker, New York, 1978, 14, 83-165.
[5.3] L. J. Deng, M. G. Han, Applied Physics Letters, 2007, 91, 023119-023121.
[5.4] R. C. Che, L. M. Peng, X. F. Duan, Q. Chen, X. L. Liang, Advanced Materials, 2004, 16, 401-405.
[5.5] X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, W. N. Wang, X. G. Zhu, et al., Applied Physics Letters, 2006, 89, 053115-053117.
[5.6] F. Wen, H. Yi, L. Qiao, H. Zheng, D. Zhou, F. Li, Applied Physics Letters, 2008, 92, 042507-042509.
[5.7] E. H. Hong, K. H. Lee, S. H. Oh, C. G. Park, Advanced Materials, 2002, 14, 676-679.
[5.8] Y. Zhang, N. W. Franklin, R. J. Chen, H. J. Dai, Chemical Physics Letters, 2000, 33, 35-41.
[5.9] Y. Ominami, Q. Ngo, M. Suzuki, A. J. Austin, C. Y. Yang, A. M. Cassell, et al., Applied Physics Letters, 2006, 89, 263114-263116.

Chapter 6
[6.1] P. Li, X. Lim, Y. Zhu, T. Yu, C. K. Ong, Z. Shen, A. T. S. Wee, C. H. Sow, Journal of Physical Chemistry B, 2007, 111, 1672-1678.
[6.2] T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown, Carbon, 2005, 43, 153-161.
[6.3] W. S. Bacsa, D. Ugarte, A. Chatelain, W. A. de Heer, Physical review B, 1994, 50, 473-476.
[6.4] I. D. Rosca, F. Watari, M. Uo, T. Akasaka, Carbon, 2005, 43, 3124-3131.
[6.5] R. O. Dillon, J. A. Woollam, V. Katkanant, Physical review B, 1984, 29, 3482-3489.
[6.6] A. C. Ferrari, J. Robertson, Physical review B, 2001, 64, 075414-1-13 (13pp).
[6.7] M. Chhowalla, A. C. Ferrari, J. Robertson, G. A. J. Amaratunga, Applied Physics Letters, 2000, 76, 1419-1421.

Chapter 7
[7.1] P. Li, X. Lim, Y. Zhu, T. Yu, C. K. Ong, Z. Shen, A. T. S. Wee, C. H. Sow, Journal of Physical Chemistry B, 2007, 111, 1672-1678.
[7.2] T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown, Carbon, 2005, 43, 153-161.
[7.3] J. S. Lee, A. Chandrashekar, B. M. Park, L. J. Overzet, G. S. Lee, Journal of Vacuum Science & Technology B, 2005, 23, 1013-1017.
[7.4] W. S. Bacsa, D. Ugarte, A. Chatelain, W. A. de Heer, Physical review B, 1994, 50, 473-476.
[7.5] I. D. Rosca, F. Watari, M. Uo, T. Akasaka, Carbon, 2005, 43, 3124-3131.
[7.6] M. Endo, Y. A. Kim, Y. Fukai, T. Hayashi, M. Terrones, H. Terrones, et al., Applied Physics Letters, 2001, 79, 1531-1533.
[7.7] A. Felten, C. Bittencourt, J. J. Pireaux, G. Van Lier, J. C. Charlier, Journal of Applied Physics, 2005, 98, 074308-1-9 (9pp).
[7.8] T. D. B. Nguyen-Vu, H. Chen, A. M. Cassell, R. Andrews, M. Meyyappan, J, Li, Small, 2006, 2, 89-94.
[7.9] G. Massobrio, P. Massobria, S. Martinoia, Nano Letters, 2008, 8, 4433-4440.
[7.10] J. Li, J. E. Koehne, A. M. Cassell, H. Chen, H. T. Ng, Q. Ye, W. Fan, J. Han, M. Meyyappan, Electroanalysis, 2005, 17, 15-27.
[7.11] S. Yang, J. Huo, H. Song, X. Chen, Electrochimica Acta, 2008, 53, 2238-2244.
[7.12] K. Wang, H. A. Fishman, H. J. Dai, J. S. Harris, Nano Letters, 2006, 6, 2043-2048.
[7.13] T. Gabay, M. Ben-David, I. Kalifa, R. Sorkin, Z. R. Abrams, E. Ben-Jacob, Y. Hanein, Nanotechnology, 2007, 18, 035201-1-6 (6pp).
[7.14] E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, T. L. Reinecke, Science, 2005, 307, 1942-1945.
[7.15] Y. T. Kim, Y. Y. Kim, C. H. Jun, Part of the Symposium on Design, Test, and Microfabrication of MEMS and MOEMS. Conference, Paris, France, 1999, 3680, 924-930.
[7.16] K. D.Wise, Engineering in Medicine and Biology Magazine, IEEE, 2005, 24, 22-29.
[7.17] N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, L. Ballerini, Advanced Materials, 2009, 21, 3970-4004.
[7.18] H. C. Su, C. H. Chen, Y. C.Chen, D. J. Yao, H. Chen, Y. C. Chang, T. R.Yew, Carbon, 2010, 48, 805-812.
[7.19] T. Funakoshi, T. Inoue, H. Shimada, S. Kojim, Toxicology, 1997, 124, 21-26.
[7.20] A. O. Lobo, E. F. Antunes, A. H. A. Machado, C. Pacheco-Soares, V. J. Trava-Airoldi, E. J. Corat. Materials Science and Engineering: C, 2008, 28, 264-269.
[7.21] D. Bogdanski, M. Koller, D. Muller, G. Muhr, M. Bram, H. P. Buchkremer, et al., Biomaterials, 2002, 23, 4549-4555.
[7.22] J. Ryhanen, M. Kallioinen, J. Tuukkanen, J. Junila, E. Niemela, P. Sandvik, et al., Journal of Biomedical Materials, 1998, 41, 481-488.
[7.23] R. W. Y. Poon, K. W. K. Yeung, X. Y. Liu, P. K. Chu, C. Y. Chung, W. W. Lu, et al., Biomaterials, 2002, 26, 2265-2272.



Chapter 9
[9.1] X. Chen, A. Kis, A. Zettl, C. R. Bertozzi, PNAS, 2007, 104, 8218-8222.
[9.2] I. U. Vakarelski, S. C. Brown, K. Higashitani, B. M. Moudgil, Langmuir, 2007, 23, 10893-10896.
[9.3] T. Kawano, C. Y. Cho, L. Lin, Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2007, 895-898.
[9.4] S. R. Yeh, Y. C. Chen, H. C. Su, T. R. Yew, H. H. Kao, Y. T. Lee, T. A. Liu, H. Chen, Y. C. Chang, P. Chang, H. Chen, Langmuir, 2009, 25, 7718-7724.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *