帳號:guest(3.90.33.254)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃奕仁
作者(外文):Huang, Yi-Jen
論文名稱(中文):鈦相關氧化物成長機制及其性質之研究
論文名稱(外文):Titanium Related Metal Oxides - Growth Behaviors and Properties
指導教授(中文):李紫原
裘性天
指導教授(外文):Lee, Chi-Young
Chiu, Hsin-Tien
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:925511
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:107
中文關鍵詞:鈣鈦礦成長
外文關鍵詞:Tiperovskitegrowth
相關次數:
  • 推薦推薦:0
  • 點閱點閱:82
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
當材料縮小至奈米等級時,因其表面積增大或特定晶面的外露,常有不同於塊材的性質。近幾年來利用「由下而上」的合成方法來操控奈米材料的形貌和結構吸引了科學家們的目光。一般而言,材料的形貌深深受到成長行為的影響,在非平衡系統下,溫度梯度和濃度梯度是晶體成長的驅動力,導致了樹枝狀的成長。而在平衡系統下,原子的堆積傾向於讓熱力學穩的面外露,進而造成多面體的晶體。本研究以鹼處理方式在不同條件下合成出鈦酸鋇,鈦酸鍶,鈦酸鈣,以及稀有礦物-kassite等鈦相關氧化物,其多樣化的形貌和結構起因於不同的成長的行為。
首先,我們使用鈦前驅物和相關的氫氧化物在強鹼環境下來合成出多種鈣鈦礦結構(A2+B4+O2-3),由於鋇、鍶和鈣這三者離子的電荷密度不同,造成原子堆積於 {111} 和 {100} 面上的速率不同,進而導致鈦酸鋇的形貌為圓球狀,鈦酸鍶為有著圓邊和{100}外露面的立方體,鈦酸鈣則為菱菱角角的立方體。利用其立方體的邊和角能量較高的特性,我們選用氟化鈉奈米立方體當作模板,讓四異丙氧基化鈦 (titanium tetraisopropoxide)水解成長於能量高的地方,再去除其模板,即可以得到鳥籠狀的奈米二氧化鈦。
當鈦酸鈣於弱鹼環境下合成時,由於系統中的濃度梯度增加而導致系統遠離平衡狀態,造成動力學產物-樹枝狀晶體的形成,此樹枝狀晶體主幹沿(012)面的法線向量,而兩個分枝分別沿(102)和 面的法線向量成長。此外,使用鈦前驅物和氫氧化鈣在短時間下反應時,另一種動力學產物 – kassite 第一次以人工合成的方法得到。以穿透式電子顯微鏡配合同步輻射X光圖譜解析出其結構為六方晶系P312 並有著a = b = 0.52451(2) 和 c = 0.47844(3) nm. 在大部分的實驗中,常伴隨有鈦酸鈣的形成,這是因為kassite的形成是動力學控制下的產物,是經由溶於鹼中的氫氧化鈦和固體的氫氧化鈣反應而得到。而相對的,鈦酸鈣是熱力學控制下的產物,是經由溶於鹼中的氫氧化鈦和溶於水中的鈣離子反應所得到。當調整氫氧化鈣和二氧化鈦的莫耳比例為2:1,並且在10 M的濃氫氧化鈉下反應,再藉由鹽酸浸泡產物就可以得到純的片狀kassite。我們進一步的對此材料於不同溫度下做熱處理,從相對應的X光繞射圖譜和熱重損失-質譜圖譜分析得知加熱在500 °C 以上,結構中的水會完全的被去除而原子重新排列,溫度升至700 °C時則完全變成鈦酸鈣結構,其形貌仍然保持在片狀但在表面出現非晶質的二氧化鈦。當加熱至更高溫約1000°C時,非晶質的二氧化鈦轉換為金紅石(rutile) 並且晶粒聚集成長變大使得片狀結構崩解。
當鈦酸鋇和鈦酸鍶於短時間下合成時,並無法得到任何動力學產物,只有伴隨著殘留二氧化鈦。此複合材料為天然的hetrojunction 能夠抑制電子-電洞的再結合。本實驗以合成TiO2/BaTiO3 複合材料當作染料敏化電池的陽極材料,相較於純的二氧化鈦,其電池的轉換效率增加了1.7倍。
Tables of Contents
Abstract I
中文摘要 IV
誌謝 VI
Lists of Figure Captions XI
Lists of Table Captions XV
Chapter 1 Introduction and Literature Review 1
1.1 Introduction 2
1.2 Literature reviews 5
1.2.1 Synthesis of metal oxide by alkali treatment 5
1.2.2 Kassite 12
1.2.3 Perovskite 15
1.2.4 Denedrite 17
1.2.5 Dye-sensitized solar cell 24
Chapter 2 Motivation 30
Chapter 3 Experimental Procedure 33
3.1 Materials 34
3.1.1 Reagents for synthesis 34
3.1.2 Electrolyte 35
3.1.3 Conducting substrate 35
3.2 Synthesis of calcium titanate 35
3.3 Synthesis of kassite (CaTi2O4(OH)2) 36
3.4 Synthesis perovskite related materials 36
3.5 Synthesis of TiO2/BaTiO3 composite 36
3.6 Fabrication of dye-sensitized solar cells. 37
3.6.1 Photoelectrode 37
3.6.2 Counter electrode 37
3.6.3 Electrolyte 37
3.6.4 Fabrication 37
3.7 Characterization and analysis 38
3.7.1 Morphological and structural characterization 38
3.7.2 Measurement of solar cell efficiency 39
3.7.3 Software of XRD refinement 39
3.7.4 Other analysis 39
Chapter 4 Growth of CaTiO3 Dendrites and Rectangular Prisms through a Wet Chemical Method 41
4.1 Abstract 42
4.2 Morphological and structural characterizations 43
4.3 Growth direction of dendrites 46
4.4 Growth mechanism of dendrites 50
4.5 Growth mechanism of rectangular prisms 51
4.6 Conclusion 56
Chapter 5 Artificial Synthesis of Platelet-like Kassite and Its Transformation to CaTiO3 57
5.1 Abstract 58
5.2 Morphological and structural characterization 59
5.3 XRD refinement 63
5.4 Thermostability of kassite 64
5.5 Formation mechanism of kassite 70
5.6 Conclusion 74
Chapter 6 Manipulating the Shapes of Metal Oxides by Surface Stability 75
6.1 Abstract 76
6.2 Morphological and structural characterizations 77
6.3 Growth mechanism 79
6.4 Synthesis of nanocages 81
6.5 Conclusion 84
Chapter 7 A Simple Route to Synthesize TiO2/BaTiO3 Hetrojunction for Dye-sensitized Solar Cells 85
7.1 Abstract 86
7.2 Morphological and structural characterizations 86
7.3 Performance of DSSCs 88
7.4 Charge transport resistance and lifetime 90
7.5 Conclusion 93
Chapter 8 Future Work 94
Appendix. 96
References 97
Publication list 107
References
Chapter 1
[1] Q. Chen, W. Zhou , G.H. Du , L. M. Peng, Adv. Mater. 14 ( 2002) 1208.
[2] S. Zhang, Q. Chen, L. M. Peng, Phys. Rev. B 7 (2005) 014104.
[3] S. Doeuff, Y. Dromzee, F. Taulelle, C. Sanchez, Inrg. Chem. 28 (1989) 4439.
[4] X. Lei, M. Shang, T. P. Fehlner, Organometallics 16 (1997) 5289.
[5] T. J. Boyle, T. M. Alam, C. J. Tafoya, B. L. Scott, Inorg. Chem. 37 (1998) 5588.
[6] Tsai, M. C.;Tsai, T. L.; Lin C. T.; Chung, R. J.; Sheu, H. S.; Chiu, H. T.; Lee, C.Y. J. Phys. Chem. C 112 (2008) 2697.
[7] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269.
[8] Z. L. Wang, J. Phys. Chem. C 111 (2007) 1150.
[9] S. Sakthivel, H. Kisch, Angew. Chem. Int. Ed. (2003), 42, 4908.
[10] J. C. Yu, W. Ho, J. Yu, H. Yip, P. K. Wong, J. Zhao, Environ. Sci. Technol. 39 (2005) 1175
[11] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Nihara, Langmuir 14 (1998) 3160
[12] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Nihara, Adv. mater. 11 (1999) 1307.
[13] G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan and L.-M. Peng, Appl. Phys. Lett. 79 (2001) 3702
[14] Q. Chen, G. H. Du, S. Zhang and L. -M. Peng, Acta Cryst. B 58 (2002) 587
[15] Q. Chen, W. Zhou, G. H. Du and L. -M. Peng, Adv. Mater. 14 (2002) 1208
[16] D. V. Bavykin, J. M. Friedrich, F. C. Walsh. Adv. Mater. 18 (2006) 2807-2824.
[17] D. Wu, J. Liu, X. Zhao, A. Li, Y. Chen, N. Ming, Chem. Mater. 18 (2006) 547.
[18] A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio, H. A. Aritani, J. Mater. Sci. 39 (2004), 4239.
[19] J. J. Yang, Z. S. Jin, X. D. Wang, W. Li, J. W. Zhang, S. L. Zhang, X. Y. Guo, Z. J. Zhang, Dalton Trans, 2003, 3898.
[20] R. Z. Ma, Y. Bando, T. Sasaki, Chem. Phys. Lett. 380 (2003) 577.
[21] R. Z. Ma, K. Fukuda, T. Sasaki, M. Osada, Y. Bando, J. Phys. Chem. B, 109 (2005) 6210.
[22] G. H. Du, Q. Chen, P. D. Han, Y. Yu, L. –M. Peng, Phys. Rev B 67 (2002) 035323
[23] H. Xu, M. Nyman, T. M. Nenoff, A. Navrotsky, Chem. Mater. 16 (2004) 2034-2040
[24] T. Y. Ke, H. A. Chen, H. S. Sheu, J. W. Yeh, H. N. Lin, C. Y. Lee and H. T. Chiu, J. Phys. Chem. C 112 (2008) 8827-8831.
[25] I. P. Raevskii, L. A. Reznichenko, V. G. Smotrakov, V. V. Eremkin, M. A. Malitskaya, E. M. Kuznetsova, L. A. Shilkina, Tech. Phys. Lett. 26 (2002) 744-746
[26] G. Shirane, R. Newnham, R. Pepinsky Phys. Rev. 96 (1954) 581-588.
[27] Jolyon Ralph (2009) Kassite: Kassite mineral information and data. Jolyon Ralph and Ida Chau. Available via “http://www.mindat.org/min-2166.html”. Accessed 22 Sep 2009.
[28] Demirors AF, and Imhof A (2009) BaTiO3, SrTiO3, CaTiO3, and BaxSr1-xTiO3 particles: A general approach for monodisperse colloidal perovskites. Chem. Mater. 21: 3002-3007.
[29] Pfaff G (1994) Synthesis of calcium titanate powders by the sol-gel process. Chem. Mater. 6: 58-62.
[30] S. K. Manik, and S. K. Pradhan Mater. Chem. Phys. 86: (2004) 284-292.
[31] Michael F (1967) New mineral names. Am. Mineral. 52: 559-564.
[32] Howard TE, Edward JD, and Charles M (1986) Kassite from the Diamond Jo Quarry, Magnet Cove, Hot Spring County, Arkansas; the problem of cafetite and kassite. Am. Mineral. 71: 1045-1048.
[33] Peter GS, and Peter RB (1991) structure model for kassite, CaTi2O4(OH)2 Am. Mineral. 76: 283-287.
[34] Grey IE, Mumme WG, Pekov IV, and. Pushcharovsky DY (2003) The crystal structure of chromian kassite from the Saranovskoye deposit, Northern Urals, Russia. Am. Mineral. 88: 1331-1335.
[35] Ryoko Konta, Tatsuya Ishii, Hideki Kato, and Akihiko Kudo, J. Phys. Chem. B 2004, 108, 8992-8995
[36] Masahiro Miyauchi, Minoru Takashio, and Hiroki Tobimatsu, Langmuir 2004, 20, 232-236.
[37] L. Gomathi Devi, G. Krishnamurthy, J. Hazard. Mater. 162 (2009) 899–905
[38] Dutta, P. K.; Asiaie, R.; Akbar, S. A.; Zhu, W. D. Chem. Mater. 1994, 6, 1542–1548.
[39] Her, Y.-S.; Matijevic, E.; Chon, M. C. J. Mater. Res. 1995, 10, 3106–3114.
[40] Takeuchi, T.; Tabuchi, M.; Ado, K.; Honjo, K.; Nakamura, O.;Kageyama, H.; Suyama, Y.; Ohtori, N.; Nagasawa, M. J. Mater. Sci. 1997, 32, 4053–4060
[41] Jonathan E. Spanier, Alexie M. Kolpak, Jeffrey J. Urban, Ilya Grinberg, Lian Ouyang, Wan Soo Yun, Andrew M. Rappe, and Hongkun Park, Nano Lett., 6 (2006) 735–739
[42] K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, C. B. Eom, Science 306 (2004) 1005 - 1009
[43] Lee, T.; Aksay, I. A. Cryst. Growth Des. 2001, 1, 401–419.
[44] Chen, Z. X.; Chen, Y.; Jiang, Y. S. J. Phys. Chem. B 2001, 105, 5766–5771.
[45] Bhalla, A. S.; Guo, R.; Roy, R. Mater. Res. Innovations 2000, 4, 3–26.
[46] Setter, N.; Waser, R. Acta Mater. 2000, 48, 151–178.
[47] Hennings, D.; Klee, M.; Waser, R. Adv. Mater. 1991, 3, 334–340.
[48] Haertling, G. H. J. Am. Ceram. Soc. 1999, 82, 797–818.
[49] Lee, J.-Y.; Lee, J.-H.; Hong, S.-H.; Lee, Y. K.; Choi, J.-Y. Adv. Mater. 2003, 15, 1655–1658.
[50] Moreno, J.; Dominguez, J. M.; Montoya, A.; Vicente, L.; Viveros, T. J. Mater. Chem. 1995, 5, 509.
[51] Her, Y.-S.; Matijevic, E.; Chon, M. C. J. Mater. Res. 1995, 10, 3106–3114.
[52] Takeuchi, T.; Tabuchi, M.; Ado, K.; Honjo, K.; Nakamura, O.; Kageyama, H.; Suyama, Y.; Ohtori, N.; Nagasawa, M. J. Mater. Sci. 1997, 32, 4053–4060.
[53] Clark, I. J.; Takeuchi, T.; Ohtori, N.; Sinclair, D. C. J. Mater. Chem. 1999, 9, 83–91.
[54] Kyomen, T; Sakamoto, R.; Sakamoto, N.; Kunugi, S.; Itoh, M. Chem. Mater. 2005, 17, 3200–3204.
[55] Qin, S.; Becerro, A. I.; Seifert, F.; Gottsmanna, J.; Jiang, J. J. Mater. Chem. 2000, 10, 1609–1615.
[56] P. K. Petrov, Z. G. Ivanov and S. S. Gevorgyan Mater. Sci. Eng. A 288 (2000), p. 231.
[57] P.K. Petrov, Z.G. Ivanov and S.S. Gevorgyan, Mater. Sci. Eng. A 288 (2000), p. 231.
[58] D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu, Y. Shimakawa and M. Takano, Nature Mater. 4 (2005), p. 816.
[59] Y. Hu, O.K. Tan, J.S. Pan and X. Yao, J. Phys. Chem. B 108 (2004), p. 11214.
[60] R. Konta, T. Ishii, H. Kato and A. Kudo, J. Phys. Chem. B 108 (2004), p. 8992.
[61] M. Miyauchi, M. Takashio and H. Tobimatsu, Langmuir 20 (2004), p. 232.
[62] T. Ohno, T. Tsubota, Y. Nakamura and K. Sayama, Appl. Catal. A-Gen. 288 (2005), p. 74.
[63] K. Morii, H. Kawano, I. Fujii, T. Matsui and Y. Nakayama J. Appl. Phys. 78 (1995), 1914
[64] W. F. Zhang, Z. Yin, M. S. Zhang, Z. L. Du, W. C. Chen, J. Phys.: Condens. Matter 11 (1999), 5655-5660
[65] F. M. Pontesa, E. Longo, , a, E. R. Leitea, E. J. H. Leea, J. A. Varelab, P. S. Pizanic, C. E. M. Camposc, F. Lanciottic, V. Mastellarod and C. D. Pinheiro Mater. Chem. Phys. 77 (2003) 598-602
[66] V. V Lemanov, A. V. Sotnikov, E. P. Smirnova, M. Weihnacht, R. Kunze, Solid State Commun. 110 (1999) 611–614.
[67] C. Pecharromon, F. Esteban-Betegon, J. F. Bartolome, S. Lopez-Esteban, Moya, J. S. Adv. Mater. 13 (2001) 1541.
[68] Ohtsu, N.; Sato, K.; Yanagawa, A.; Saito, K.; Imai, Y.; Kohgo, T.;Yokoyama, A.; Asami, K.; Hanawa, T. J. Biomed. Mater. Res. A 82A (2007) 304.
[69] E. Knittle , R. Jeanloz Science 235 (1987) 668.
[70] W. F. Zhang, Z. Yin, M. S. Zhang, Z. L. Du, W. C. Chen, J. Phys.: Condens. Matter 11 (1999), 5655-5660.
[71] M. Murakami, K. Hirose, K. Kawamura, N. Sata, Y. Ohishi, Science 304 (2004) 855.
[72] T. Iitaka, K. Hirose, K. Kawamura, M. Murakami, Nature 430 (2004) 442.
[73] Oganov A R and Ono S Nature 430 (2004) 445.
[74] Redfern S A T J. Phys.: Condens. Matter 8 (1996) 8267.
[75] Wu X, Qin S, Wu Z Y, Dong Y H, Liu J and Li X D Acta Phys. Sin. 53 (2004) 1967.
[76] McQuarrie, M. J. Am. Ceram. Soc. 38 (1955), 444.
[77] X. Wu, Y. H. Dong, S. Qin, M. I. Abbas, Z. Y. Wu Solid State Commun. 136 (2005) 416.
[78] P. K.Galagherand, J.Thompson, J. Am. Ceram. Soc. 48 (1965) 644.
[79] Wang, Y.; Xu, H.; Wang, X.; Zhang, X.; Jia, H.; Zhang, L.; Qiu, J. J. Phys. Chem. B 110 (2006) 13835–13840.
[80] Choi, J. Y.; Kim, C. H.; Kim, D. K. J. Am. Ceram. Soc. 81 (1998) 1353–1356.
[81] Niederberger, M.; Bartl, M. H.; Stucky, G. D. J. Am. Chem. Soc. 126 (2004) 9120–9126.
[82] O‘Brien, S.; Louis, B.; Murray, C. B. J. Am. Chem. Soc., 123 (2001) 12085–12086.
[83] Su, K.; Nuraje, N.; Yang, N. L. Langmuir 23 (2007) 11369–11372.
[84] Calderone, V. R.; Testino, A.; Buscaglia, M. T.; Bassoli, M.;Bottino, C.; Viviani, M.; Buscaglia, V.; Nanni, P. Chem. Mater. 18 (2006) 1627–1633.
[85] L. Nastac, Acta. Mater. 47 (1999) 4253-4262.
[86] K. Fujiwara, K. Maeda, N. Usami, G. Sazaki, Y. Nose, A. Nomura, T. Shishido and K. Nakajima, Acta. Mater. 56 (2008) 2663-2668.
[87] D. Ruvalcaba, R. H. Mathiesen, D. G. Eskin, L. Arnberg and L. Katgerman, Acta. Mater., 2007, 55, 4287-4292.
[88] T. Aoyama, Y. Takamura and K. Kuribayashi, Metall. Mater. Trans. A, 1999, 30, 1333-1339.
[89] D. Herlach Mater.Sci. Eng. 34 (1997) A226–228.
[90] Y. Teraoka, A. Saito,S. Okawa, Inter. J. .Refriger. 25 (2002) 218-225.
[91] K. Ohsaka, E. Trinh, J. Crystal Growth 194 (1998) 138.
[92] J.P. Hindmarsh, A.B. Russell, X.D. Chen, J. Cryst. Growth 285 (2005) 236–248.
[93] M.F. Butler, Crystal Growth Design 1 (2001) 213.
[94] T. A., Jr.; Sander, L. M. Physical Review Letters, 47 (1981) 1400-1403.
[95] H. Honjo and S. Ohta, Physical Review A, 45 (1992) R8332-R8335.
[96] E. Ben-Jacob, G. Deutscher, P. Garik, Nigel D, Goldenfeld,Y. Lareah, Phys. Rev. Lett. 57 (1986) 1903–1906.
[97] E. Ben-Jacob and P. Garik, Nature, 1990, 343, 523-530.
[98] R.Trivedir, W and Kurz, Int. Mater. Rev. 39 (1994) 49-74.
[99] H. F. Wang, F. Liu, Z. Chen and G. C.Yang, Acta. Mater. 55 (2007) 497-506.
[100] A. Karma, W. J. Rappel, Phys. Rev. E. 57 (1998) 4323-4349.
[101] L. Nastac, Acta. Mater. 47 (1999) 4253-4262.
[102] K. Fukami, S. Nakanishi, H. Yamasaki, T. Tada, K. Sonoda, N. Kamikawa, N. Tsuji, H. Sakaguchi, and Y. Nakato J. Phys. Chem. C 111 (2007) 1150-1160.
[103] D. Kuang, A. Xu, Y. Fang, H. Liu, C. Frommen and D. Fenske, Adv. Mater., (2003), 15, 1747-1750.
[104] M. Cao, T. Liu, S. Gao, G. Sun, X. Wu, C. Hu and Z. L. Wang, Angew. Chem. Int. Ed. 44 (2005) 4197-4201.
[105] V. Fleury, Nature 390 (1997) 145-148.
[106] M.Wang, and N. B. Ming, Phys. Rev. Lett. 71 (1993) 113-116.
[107] H. Li, G. Y. Zhu, X. J. Huang and L. Q. Chen, J. Mater. Chem. 10 (2000), 693-696.
[108] P. C. Hsu, S. K. Seol, T. N. Lo, C. J. Liu, C. L. Wang, C. S. Lin, Y. Hwu, C. H. Chen, L. W. Chang and J. H. Je, J. Electrochem. Soc. 155 (2008) D400-D407.
[109] L. Fan and R. Guo, Cryst. Growth. Des. 8 (2008) 2150-2156.
[110] D. Kuang, A. Xu, Y. Fang, H. Liu, C. Frommen, and D. Fenske, Adv. Mater. 15 (2003) 1747-1750.
[111] Q. Wang, G. Xu and G. Han. Cryst. Growth. Des. 6 (2006) 1776-1780.
[112] W. P. Lim, H. Y. Low,. W. S. Chin, Crystal Growth & Design, 7 ( 2007) 12
[113] M. Gra1tzel, Inorg. Chem. 44 (2005) 6841-6851.
[114] M. Gra1tzel, Nature 414 (2001) 338-344.
[115] J. B. Baxter, E. S. Aydil, Appl. Phys. Lett. 86 (2005) 053114
[116] S. Chappel, S. Chen, A. Zaban Langmuir 18 (2002) 3336–3342
[117] S. G. Chen, S. Chappel, Y. Diamant, and A. Zaban Chem. Mater. 13 (2001) 4629-4634.
[118] Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, S. M. Zakeeruddin M. Gra1tzel, Nature 414 (2008) 626-630.
[119] D. B.Menzies, Q. Dai, Y.-B. Cheng, G. P. Simon, and L. Spiccia, Comptes Rendus Chimie, vol. 9, no. 5-6, pp. 713–716, (2006)
[120] E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, Journal of the American Chemical Society, vol. 125, no. 2, pp. 475–482, (2003).
[121] G. R. R. A. Kumara, K. Tennakone, V. P. S. Perera, A. Konno, S. Kaneko, and M. Okuya, Journal of Physics D, vol. 34, no. 6, pp. 868–873, (2001).
[122] K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, and V. P. S. Perera, Chem. Comm. 1 (1999) 15–16,.
[123] A. Kay and M. Gr¨atzel, Chem. Mater. 14 (2002) 2930–2935
[124] Q. Wang, J. E. Moser, M. Gratzel, J. Phys. Chem. B 109 (2005) 14945-14953.
[125] R. Kern, R. Sastrawan, J. Feber, R. Stangl, J. Luther Electrochim. Acra 47 (2002) 4213-1225.
[126] L. Han, N. Koide, Y. Chiba, T. Mitate, Appl. Phys. Lett. 84 (2004) 2433-2435
Chapter 4
[1] E. Ben-Jacob and P. Garik, Nature, 343 (1990) 523-530.
[2] S. Reutzel and H. Hartmann, Appl. Phys. Lett., 91 (2007) 041913.
[3] S. Henry, P. Jarry and M. Rappaz, Metall. Mater. Trans. A, 29, (1998) 2807-2817.
[4] H. LeHuy and G. L'espérance, J. Mater. Sci., 26 (1991) 559-568.
[5] H. Chu, X. Li, G. Chen, Z. Jin, Y. Zhang ,and Y. Li, Nano Res. 1 (2008) 213-220.
[6] R. E. Reed-Hill and R. Abbaschian Physical Metallurgy Principles; PWS publishing, 3rd Edition, 1994, pp. 439.
[7] J. Padilla and D. Vanderbilt, Phys. Rev. B, 56 (1997) 1625-1631.
[8] V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides; Cambridge University Press, 1994, pp. 38-44.
[9] C. Ribeiro, E. J. H. Lee, T. R. Giraldi, R. Aguiar, E. Longo and E. R. Leite, J. Appl. Phys. 97 (2005) 024313-024314.
[10] Q. Zhang, S. Liu and S. Yu, J. Mater. Chem. 19 (2009) 191-207.
[11] B. Liu, S. Yu, L. Li, Q. Zhang, F. Zhang and K. Jiang, Andew. Chem. Int. Ed., 43 (2004) 4745-4750.

Chapter 5
[1] T. Sugimoto, X. Zhou, A. Muramatsu, J. Colloid Interf. Sci. 252 (2002) 339.
[2] Peter GS, and Peter RB (1991) structure model for kassite, CaTi2O4(OH)2 Am. Mineral. 76: 283-287.

Chapter 6
[1] P. K Dutta, P. K. Gallaghor, J. Twu, Chem. Mater. 5 (1993) 1739-1743.
[2] Ichiro Sunagawa: Crystals/growth, Morphology, and Perfection (Cambridge University Press, 2005), pp. 60-67.
[3] Robert E. Reed-Hill and Reza Abbaschian: Physical Metallurgy Principles, 3rd Edition (PWS publishing, 1994), pp. 439.
[4] L.-W. Yin, Y. B., J. H. Zhan, M.-S. Li, and D. Golberg, Adv. Mater. 17 (2005) 1972.
[5] J. Chen, B. Wiley, Z. Y. Li, S. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X.Li, and Y. Xia, Adv. Mater. 17 (2005) 2255.
[6] J. Padilla, D. Vanderbilt, Phys. Rev. B 56 (1997) 1625
[7] Victor E. Henrich, and P. A. Cox: The Surface Science of Metal Oxides (Cambridge University Press, 1994), pp. 38-44.

Chapter 7
[1] Q. Wang, J. E. Moser, M. Gratzel, J. Phys. Chem. B 109 (2005) 14945-14953.
[2] R. Kern, R. Sastrawan, J. Feber, R. Stangl, J. Luther Electrochim. Acra 47 (2002) 4213-1225.
[3] L. Han, N. Koide, Y. Chiba, T. Mitate, Appl. Phys. Lett. 84 (2004) 2433-2435
[4] N. Wang, H. Lin, J. Li, X. Li, Appl. Phys. Lett. 89 (2006) 194104.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *