帳號:guest(54.224.124.217)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳弘銘
作者(外文):Chen, Hung Ming
論文名稱(中文):以原子力顯微鏡探討膽固醇及心臟毒素A3對腦硫脂人造細胞膜的作用
論文名稱(外文):AFM studies of Cholesterol and Cardiotoxin-A3 Effects on Sulfatide-POPC Model Membranes
指導教授(中文):吳文桂
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:924239
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:64
中文關鍵詞:心臟毒素A3原子力顯微鏡腦硫脂
相關次數:
  • 推薦推薦:0
  • 點閱點閱:417
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
摘要

過去的研究發現,膽固醇與腦硫脂對細胞膜的狀態以及心臟毒素A3的作用有很大的影響。因此在本論文中,首先利用原子力顯微鏡闡明膽固醇對細胞膜狀態的影響。接著透過原子力顯微鏡以及共軛焦顯微鏡觀察量測,以確定腦硫脂與細胞膜的作用區域。結果發現膽固醇對腦硫脂-POPC雙層膜造成的效果與過去文獻中所記載的其他脂質相符合;透過原子力顯微鏡以及共軛焦顯微鏡,我們也發現心臟毒素A3的作用區域確實是在腦硫脂上,且原子力顯微鏡的證據顯示,心臟毒素A3有可能是透過腦硫脂的邊緣區域結合於膜上後,再進一步插入膜內,此結果能進一步證明過去本實驗室所推論出的心臟毒素-腦硫脂作用模型。藉此使我們對心臟毒素的作用機制有更確實的了解。
Abstract

It has recently been shown that cholesterol and sulfatides plays important role in cell membrane status and CTX-A3 interactions. In order to understand the relationship between cholesterol, model membrane and CTX-A3, we employed atomic force microscopy to study cholesterol and model membrane relationship first. We also applied confocal microscope to study the interaction between CTX-A3 and model membrane. Our results suggest that cholesterol decrease the height of sulfatide domains on model membrane, also decrease the average membrane thickness of Sulfatide- POPC membrane. We also found CTX-A3 interacts with sulfatide domains. According to statistic results of AFM images, we found the initial interaction of CTX-A3 and sulfatide-POPC membrane might happen at the edge of sulfatide domains. Which means CTX-A3 might attach to the edge of sulfatide domain, and then CTX-A3 could disturb the dynamics of the edge lipids. Finally CTX-A3 could interact with other CTX-A3 to form complex or insert to membrane to induce following changes. This confirms our labs model again and gives us more understanding of that how CTX-A3 could interact with cell membranes.
目錄
第一章 緒論-------------------------------------------2
1-1 生物細胞膜簡介------------------------------------2
1-2 蛇毒蛋白簡介--------------------------------------6
1-3 腦硫脂簡介---------------------------------------10
1-4 研究目的-----------------------------------------12
第二章 儀器原理簡介----------------------------------24
2-1 原子力顯微鏡-------------------------------------25
第三章 實驗材料與方法--------------------------------30
3-1 實驗材料-----------------------------------------30
3-2 實驗儀器-----------------------------------------31
3-3 樣品的製備---------------------------------------35
第四章 實驗結果--------------------------------------39
4-1 腦硫脂-POPC人造雙層膜的測量與特徵----------------35
4-2心臟蛇毒蛋白A3與腦硫脂-POPC人造雙層膜之作用-----37
第五章 討論------------------------------------------54
5-1腦硫脂-POPC人造雙層膜的測量與特徵----------------54
5-2 心臟蛇毒蛋白A3與腦硫脂-POPC人造雙層膜之作用-----55
5-3 結論---------------------------------------------56
Reference--------------------------------------------57
Reference
1. Pinto-Alphandary H., Andremont A.(2000) "Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications." Int. J. Antimicrob. Agents. 13(3), 155-168.
2. Reviakine I., Brisson A., et al.(2000) "Formation of supported phosolipid bilayers from unilamellar vesicles investigated by atomic force microscopy", Langmuir, 16,1806-1815
3. 蔡蔭和 (1995) “台灣分子生物學近況(下) - 蛇毒”,科學月刊 0311期
4.覃公平 (1998) 中國毒蛇學,第二版,廣西科學技術出版社。
5.Sarkar, N.K. (1947) "Isolation of cardiotoxin from cobra venom (Naja tripudians, monocellate variety)." J.Ind.Chem.Soc. 24, 227-232.
6.Jiang, M.S., Fletcher, et al. (1989) "Factors influencing the hemolysis of human erythrocytes by cardiotoxins from Naja naja kaouthia and Naja naja atra venoms and a phospholipase A2 with cardiotoxin-like activities from Bungarus fasciatus venom" Toxicon 27, 247-257.
7. Kini, R.M., and Evans, H.J. et al (1989) "Role of Cationic Residues in Cytolytic Activity: Modification of Lysine Residues in the Cardiotoxin from Naja nigricollis Venom and Correlation between Cytolytic and Antiplatelet Activity" Biochemistry 28, 9209-9215.
8. Fletcher, J.E., Jiang, M.S., et al. (1991) "Effects of a cardiotoxin from Naja naja kaouthia venom on skeletal muscle: Involvement of calcium-induced calcium release, sodium ion currents and phospholipases A2 and C" Toxicon 29, 1489-1500.
9. Gasanov, S.E., Gasanov, N.E., et al."Phospholipase A2 and cobra venom cytotoxin Vc5 interactions and membrane structure." (1995) Gen Physiol Biophys 14, 107-123
10. Raynor, R.L., Zheng, B., et al. (1991) "Membrane interactions of amphiphilic polypeptides mastoparan, melittin, polymyxin B, and cardiotoxin. Differential inhibition of protein kinase C, Ca2+/calmodulin-dependent protein kinase II and synaptosomal membrane Na,K-ATPase, and Na+ pump and differentiation of HL60 cells." J.Biol.Chem. 266, 2753-2758.
11. Chiou, S.H., Chuang, M.H., et al.(1995) "Inhibition of protein kinase C by snake venom toxins: comparison of enzyme inhibition, lethality and hemolysis among different cardiotoxin isoforms."Biochem Mol Biol Int. 35, 1103-1112.
12. Liou, R.F., Chang, W.C., et al.(1993) "Snake veno cardiotoxin can rapidly induce actin polymerization in intact platelets" Biochem J. 290, 591-594.
13. Chien, C.M., Chang, S.Y., et al. (2010)"Taiwan cobra cardiotoxin III inhibits Src kinase leading to apoptosis and cell cycle arrest of oral squamous cell carcinoma Ca9-22 cells" May 21, accepted.
14. REES B.,SAMAMA J.P., et al. (1987) "Crystal structure of a snake venom cardiotoxin." PNAS, 10, 3132-3136
15. Chien K.Y., Chiang C.M.,et al.(1994) "Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions." J. Biol. Chem. , 57, 677-681.
16. Grognet, J.M., Menez, A., et al. (1988) "Circular dichroic spectra of elapid cardiotoxins." Eur.J.Biochem. 172, 383-388.
17. Lee S.C., Guan H.H, et al. (2005) "Structural Basis of Citrate-dependent and Heparan Sulfatemediated Cell Surface Retention of Cobra Cardiotoxin A3"., J.Biol.Chem.,280 , 9567-9577
18. Vincent, J.P., Schweitz, H., et al.(1976) "Molecular mechanism of cardiotoxin action on axonal membranes." Biochemistry., 15, 3171-3175.
19. Dufourcq J, Faucon JF.(1978) "Specific binding of a cardiotoxin from Naja mossambica mossambica to charged phospholipids detected by intrinsic fluorescence." Biochemistry,17, 1170-1176
20. Chien, K.Y., Huang, W.N., et al. (1991) "Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra (Naja naja atra) venom. Interactions of zwitterionic phospholipids with cardiotoxin analogues." J.Biol.Chem. 266, 3252-3259.
21. Dauplais M., Neumann J.M., et al. (1995) "An NMR study of the interaction of cardiotoxin gamma from Naja nigricollis with perdeuterated dodecylphosphocholine micelles." Eur J Biochem., 230 , 213-220
22. Dubovskii P.V., Dementieva D.V., et al. (2001) "Membrane binding motif of the P-type cardiotoxin." J. Mol. Biol., 305, 137-149
23. Efremov R.G., Volynsky P.E., et al(2002) "Interaction of cardiotoxins with membranes: a molecular modeling study." Biophys. J. 83,144-153
24. Mamelak D, Mylvaganam M.,et al. (2001) "Hsp70s contain a specific sulfogalactolipid binding site. Differential aglycone influence on sulfogalactosyl ceramide binding by recombinant prokaryotic and eukaryotic hsp70 family members." Biochemistry. 40, 3572-3582.
25. Boggs J.M., Menikh A., et al. (2000) "Trans interactions between galactosylceramide and cerebroside sulfate across apposed bilayers." Biophys.J., 78, 874-885
26. Boggs J.M., Wang H. et al(2004) "A glycosynapse in myelin? Glycoconj.J. 21, 97-110.
27. Wang C.H., Liu J.H., et al. (2006) "Glycosphingolipid- facilitated membrane insertion and internalization of cobra cardiotoxin. The sulfatide. cardiotoxin complex structure in a membrane-like environment suggests a lipid-dependent cell-penetrating mechanism for membrane binding polypeptides." J.Biol.Chem., 281, 656-667
28. Forouhar F., Huang W.N., et al (2003) "Structural basis of membrane-induced cardiotoxin A3 oligomerization." J.Biol.Chem. 278, 21980-21988
29. 吳柏龍(2004) "台灣眼鏡蛇毒與整合素作用之非RGD毒蛋白的鑑定與活性探討" 國立清華大學, 博士論文
30. 蔡澄明(2004) "膽固醇對台灣眼鏡蛇心臟毒素蛋白A3進入心肌細胞的影響研究" 國立清華大學, 碩士論文
31. Butt H.J., Awizio A.K.(2006) "Atomic force microscopy of lipid bilayers", Advances in planar lipid bilayers and liposomes. Vol.3, 220-249
32. Czajkowsky D.M., Shao Z et al.(2002) "Supported lipid bilayers as effect substrate for atomic force microscopy", Methods in cell biology Vol.68, 231-241
33. Simonsen A.C., Bagatolli L.A., et al.(2004) "Structure of spin-coated lipid films and domain formation in supported membranes formed by hydration." Langmuir, 20, 9720-9728
34. Castellana E.T., Cremer P.S.(2006)"Solid supported lipid bilayers:From biophysical studies to sensor design." Surface Science Reports, 61 429-444
35. 洪水根,汪德耀 (1997) 膜分子生物學, 水產出版社。
36. Prasad R.(1996) Manual on membrane lipids, Springer-Verlag Press。
37. Binnig G., Quate C.F., et al.(1986) "Atomic Force Microscope" Phys.Rev.Letters., 56, 930-933
38. Sitterberg J., Ozcetin A., et al.(2010) "Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems." Eur.J.Pharm.Biopharm. 74, 2-3
39. Kinnunen P., Alakoskela J.M, et al.(2003)
Phase behavior of liposomes", Methods in Enzymology Vol.367, 129-147
40 Ricci D., Braga P.C,(2004) "Imaging methods in atomic force microscopy. Methods in molecular biology", Atomic Froce Microscopy-Biomedical methods and applications, Humana Press.13-23
41. 林志成,林世明 (2007) 奈米量測技術-原子力顯微鏡在生物分子上之應用, 化學, 第六十七卷, 83-91頁
42. Muller D.J. (2008) "AFM:A nano-tool in membrane biology", Biochemistry, 47, 7986-7998
43. Vuong N., Baenziger J.E., et al. (2010)"Preparation of reconstituted acetylcholine receptor membranes suitable for AFM imaging of lipid-protein interactions." Chem. Phys. Lipids., 163, 117-126
44. Tokumasu F, Jin A.J. et al.(2003)"Nanoscopic lipid domain dynamics revealed by atomic force microscopy", Biophy. J., 84, 2609-2618
45. Oscar D, Sandra M M, et al.(2006)"Surface planar bilayers of phospholipids used in protein membrane reconstitution: an atomic force microscopy study." Ultramicroscopy, 97, 217-227
46. Sandrine M., Karim E.K., et al. (2007)"Solubilization of supported lipid membranes by octyl glucoside observed by time-lapse atomic force microscopy". Colloids and Surface B: Biointerfaces, 55, 179-184
47. Tokumasu F., Jin A.J., et al. (2003)"Nanoscopic lipid domain dynamics revealed by atomic force microscopy." Biophy. J., 84, 2609-2618
48. Contera S. A., Lemaître V., et al.(2005) "Unfolding and Extraction of a Transmembrane - Helical Peptide: Dynamic Force Spectroscopy and Molecular Dynamics Simulations" Biophy. J., 89, 3129-3140
49. Weise K., Triola G. (2009) "Influence of the Llipidation motif on the Partitioning and Association of N-Ras in Model Membrane Subdomains" J.Am.Chem.Soc., 131, 1557-1564
50.Last J., Waggoner T., et al.(2001) "Lipid membrane reorganization induced by chemical recognition." Biophys. J. 81, 2737-2742
51. Vuong N., Baenziger J.E., et al.(2010) "Preparation of reconstituted acetylcholine receptor membranes suitable for AFM imaging of lipid-protein interactions" Chem. Phys. Lipids., 163, 117-126
52. Mulligan K., Brownholland D. et al.(2010) "AFM investigations of phase separation in supported membranes of binary mixtures of POPC and an eicosanyl-based bisphosphocholine bolalipid." Langmuir., 26, 8525-8533.
53. Ramirez D.M., Ogilvie W.W., et al.(2010)"NBD-cholesterol probes to track cholesterol distribution in model membranes." Biochim. Biophys. Acta., 1798, 558-568
54. Milhiet P.E., Giocondi M.C., et al.(2002)"Spontaneous insertion and partitioning of alkaline phosphatase into model lipid rafts."EMBO, 3, 485-490
55. Garcia-Saez A.J., Chiantia S., et al.(2007) "Pore Formation by a Bax-Derived Peptide: Effect on the Line Tension of the Membrane Probed by AFM." Biophys J.. 93, 103–112.
56. Blanchette C.D., Lin W.C., et al.(2006) "Galactosylceramide domain microstructure: impact of cholesterol and nucleation/growth conditions." Biophys. J., 90, 4466-4478
57. Lin W.C., Blanchette C.D., et al.(2006)"Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study." Biophys. J., 90, 228-237
58. Giocondi M.C., Le Grimellec C., et al. (2004)"Temperature dependence of the surface topography in dimyristoyl phosphatidylcholine/distearoylphosphatidylcholine multibilayers." Biophys. J., 86, 2218-2230
59. Oreopoulos J., Christopher M., et al.(2009)"Combinatorial microscopy for the study of protein–membrane interactions in supported lipid bilayers: Order parameter measurements by combined polarized TIRFM/AFM" J. Struct. Biol. 168, 21-36
60.Christian A.E., Haynes M.P., et al. (1997) "Use of cyclodextrins for manipulating cellular cholesterol content." J.Lipid Res. 38, 2264-2272
61.Wang C.H., Wu WG.(2005) "Amphiphilic beta-sheet cobra cardiotoxin targets mitochondria and disrupts its network." FEBS Lett. 579, 3169-3174.
62.蔡澄明(2004) "膽固醇對台灣眼鏡蛇心臟毒素蛋白A3進入心肌細胞的影響研究" 國立清華大學 碩士論文
63. New R.R.C.(1990) Liposomes–a practical approach Oxford university press
64. Rinia H.A, Wurpel G.W.H., et al. "Visulization and characterization of Domains in supported model membranes" (2006) Advances in planar lipid bilayers and liposomes, vol.3, 85~116
65. Giocondi M.C, Yamamoto D.(2010) "Surface topography of membrane domains." Biochim. Biophys. Acta., 1798, 703-718
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *