帳號:guest(54.198.37.250)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳永和
作者(外文):Chen, Yung-Ho
論文名稱(中文):離子液體敏化太陽電池分子動態模擬及性能預測研究
論文名稱(外文):Molecular Simulation and Performance Prediction of Ionic Liquid Dye-Sensitized Solar Cells
指導教授(中文):洪哲文
指導教授(外文):Hong, Che-Wun
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:907715
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:85
中文關鍵詞:染料敏化太陽電池電解質分子動力學
外文關鍵詞:dye sensitizedsolar cellelectrolytemolecular dynamics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:255
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本論文藉由整合微觀分子動力學及巨觀計算質傳數學模式,模擬離子液體染料敏化太陽電池(Dye-Sensitized Solar Cell, 簡稱DSSC)之離子傳遞特性及整體性能,除可探究微觀奈米尺度的電解質離子擴散性與導電性外,並藉由實驗驗證其正確性,提供一套多尺度、快速、簡易的參數研究工具。
由於染料敏化太陽電池內部電子激發與傳遞,受電解質氧化還原離子擴散速率與離子本身導電性能等因素,對整體太陽電池發電性能有很大的影響。因此,本論文先從微觀角度來建立染料敏化太陽電池的質傳模式,並探討其本身特性。並於奈米尺度下,建立染料敏化太陽電池電解質分子動力學模擬模式,利用量子力學半經驗公式計算電解質電荷分布情形以及分子結構,再經由分子動力學理論與統計熱力學計算電解質的擴散係數與離子導電性能,並使用旋轉電極量測電解質溶液之極限電流,藉以換算得到的擴散係數,由可接受的誤差,證實計算結果之正確性,再以不同操作環境進ㄧ步探討濃度及溫度等參數對擴散係數之關連性。
此外,本論文亦建立染料敏化太陽電池電解質巨觀質傳模式,利用微觀角度下所計算出的電解質擴散係數與離子導電性,以及質傳定律(Fick’s Law),在陰極的部分以有限差分法推導離子溶液之濃度場,根據所消耗掉的電解質計算出其導電能力與發電性能,並預測不同操作狀況下的染料敏化太陽電池的發電性能(I-V)曲線與效率,並與實驗結果相互比較。經參數最佳化研究結果顯示[I-]濃度0.5M及[I3-]濃度0.055M在303K的狀況下,可得到最佳性能,若搭配其他參數調整下,如TiO2孔率0.45,量子效率增至1.0,整體太陽電池效率將有機會達至20%。
This thesis presents an integration of molecular dynamics simulation with computational mass transfer to predict the voltage-current performance of dye-sensitized solar cells (DSSCs). Ionic liquid electrolytes are the major transport medium that transfers redox charges (typically iodide/ triiodide) between the anode and the cathode. The flux of the species in the electrolyte is mainly diffusion transport and may constrain the solar cell performance. Molecular dynamics simulation technique was employed to assess the diffusion coefficient and ionic conductivity of the charge transport. The ionic conductivity was compared with an experimental result carried out by a rotational electrode test. The diffusion coefficient was then input to a computational mass transfer code and the depletion of redox charges at the electrode can be calculated. Electrochemical performance of the solar cell is predicted and shows in good agreement with the experimental result.
In order to maximize the DSSC performance, optimization of the design parameters has to be done. The optimal ionic liquid concentration was found to be 0.5M for [I-] and 0.055M for [I3-] at 303K. The expected energy conversion efficiency of such kind of photoelectrochemical cells is able to reach 20%, if proper parameters are tuned further, such as the porosity of the porous TiO2 is set to 0.45, the quantum efficiency reaches unity and etc.
目錄
中文摘要 I
英文摘要 II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
參數定義 IX
第一章 緒論 - 1 -
1.1前言 - 1 -
1.2太陽電池簡介 - 1 -
1.2.1太陽電池原理.. . - 1 -
1.2.2太陽電池的種類與性能 . - 5 -
1.3研究目標與動機 - 9 -
1.4文獻回顧 - 9 -
第二章 理論模式 - 12 -
2.1染料敏化太陽電池工作原理 - 12 -
2.2染料敏化太陽能電池質傳模式 - 13 -
2.3性能模擬與參數分析 - 18 -
2.4分子動力學計算與模擬 - 19 -
2.5勢能函數 - 21 -
2.5.1勢能方程式(Potential Function)及作用力- 22 -
2.5.2分子間勢能函數 - 26 -
2.6週期性邊界條件 - 29 -
2.7平均平方位移 - 32 -
2.8徑向分布函數 - 32 -
2.9擴散係數 - 34 -
2.10離子電導率 - 34 -
2.11非平衡狀態之分子動力學 - 35 -
2.12巨觀質傳與性能計算 - 38 -
2.13旋轉電極實驗原理 - 40 -
第三章 結果與討論 - 46 -
3.1系統模式與邊界條件理論模式 - 46 -
3.1.1 結構建立 - 46 -
3.1.2 模型建立 - 48 -
3.2系統平衡狀態及模式驗證 - 51 -
3.3模擬結果與討論 - 56 -
3.3.1平均平方位移 - 56 -
3.3.2徑向分布函數 - 59 -
3.3.3擴散係數 - 63 -
3.3.4離子導電率 - 68 -
3.4巨觀質傳與性能計算 - 71 -
第四章 結論與未來工作建議 - 78 -
4.1 結論 - 78 -
4.2 未來工作建議- 79 -
4.3 論文貢獻 - 80 -
參考文獻 - 81 -
參考文獻
[1] B. O’Regan, and M. Grätzel, “A low-cost, high-efficiency solarcell based on dye-sensitized colloidal TiO2 film”, Nature, Vol.353, p. 737, 1991.
[2] A. Hagfeldt and M. Grätzel, “Molecular Photovoltaics”, Accounts of Chemical Research, Vol.33, pp.269-277, 2000.
[3] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, Journal of the American Chemical Society, Vol.127, pp.16835-16847, 2005.
[4] F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, and M. Gratzel, “Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells”, Journal of the American Chemical Society, Vol.130, pp.10720-10728, 2008.
[5] K. H. Yu, J. H. Chen, “Enhancing solar cell efficiencies through 1-D Nanostructure”, Nanoscale Research Letters, Vol.4 No.1 pp.1-10, 2009.
[6] S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida “Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells”, J. Physical Chemistry B, 107 (33), pp 8607–8611, 2003.
[7] K. Hara, H. Sugihara, Y. Tachibana, A. Islam, M. Yanagida, K. Sayama, H. Arakawa, “Dye-Sensitized Nanocrystalline TiO2 Solar Cells Based on Ruthenium(II) Phenanthroline Complex Photosensitizers”, Langmuir, 2001, 17(19), pp 5992~5999.
[8] U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, ”Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies” Nature 395(6702), pp. 583-585, 1998.
[9] P. Wang, S.M. Zakeerudin, I. Exnar, M. Gratzel, “High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte”, Chemical Community, pp. 2972~2973, 2002.
[11] G. Wolfbauer, A. M. Bond, J. C. Eklund, D. Macfarlane, “A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells”, Solar Energy materials and Solar Cells, No. 70, pp. 85-101, 2001.
[12] K. Hara, T. Nishikawa, M. Kurashige, H. Kawauchi, T. Kashima, K. Sayama, K. Aika, H. Arakawa, “Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO2 solar cell based on a Ru(II) terpyridyl complex photosensitizer”, J. Physical Chemistry B., 106, pp. 12693-12704, 2002.
[13] R. Kawano, M. Watanabe, “Equilibrium potentials and charge transport of an I-/I3- redox couple in an ionic liquid”, Chemical Community, pp. 330-331, 2003.
[14] M. Gratzel, “Photoelectrochemical Cells”, Nature, 414, pp. 338-344, 2001.
[15] G P. Wang, S. M. Zakeeruddin, J. E. Moser, M. Gratzel, “A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized SolarCells”, J. Phys. Chem. B, 107, pp. 13280-13285, 2003.
[16] T. Yan, C. J. Burnham, M. G. Del Popolo, G. A.Voth, “Molecular Dynamics Simulation of Ionic Liquids: The Effect of Electronic Polarizability”, J. Physical Chemistry B., 108, pp. 1744-1752, 2004.
[17] C. G. Hanke, S. L. Price, R. M. Lynden-Bell,” Intermolecular potentials for simulations of liquid imidazolium salts”, Molecular Physics, Volume 99, Issue 10, pp. 801-809, 2001.
[18] J. N. Clifford, E. Palomares, M. K. Nazeeruddin, M. Gratzel, J. Nelson, X. Li, J. Long, J. Durrant, “Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: Free energy vs distance dependence” J. of Am. Chem. Soc., 126, pp. 5225-5233, 2004.
[19] G. Schlichthorl, S. Huang, J. Sprague, A. J. Frank, “Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy”, J. Physical Chemistry B., 101, pp. 8141-8155, 1997.
[20] M. Tuckerman, K. Laasonen, and M. Sprik, A. K. Rothman, “Ab initio molecular dynamics simulation of the salvation and transport of hydronium and hydroxyl ions in water”, Journal of Chemical Physics, Vol. 103, No. 1, pp. 150-161, 1995.
[21] R. Vuilleumier, D. Borgis, “A extend empirical valence bond model for describing proton transfer in H+(H2O) clusters and liquid water”, Chemical Physics Letters, Vol. 284, pp. 71-77, 1998.
[22] J. Ennari, M. Elomaa, F. Sundholm, “Modelling a polyelectrolyte system in water to estimate the ion-conductivity”, Polymer, Vol. 40, pp. 5035-5041, 1999.
[23] S. Picaud, P. N. M. Hoang and G. Herlem, “A molecular dynamics simulation of the electrical conductivity behaviors of high concentrated liquid ammoniates Nal•αNH3:Comparison with experimental measurements”, Journal of Chemical Physics, 122, 171102, 2004.
[24] C. Pinilla, G. Mario, D. Pópolo, R. M. Lynden-Bell, J. Kohanoff, “Structure and dynamics of a confined ionic liquid. topics of relevance to dye-sensitized solar cells”, Journal of Physics Chemistry B., 109 (38), pp. 17922-17927, 2005.
[25] R. Kawano and M. Watanabe, “Equilibrium potentials and charge transport of an I-/I3- redox couple in an ionic liquid”, Chemical Communications, pp. 330-331, 2003.
[26] S. L. Mayo, B. D. Olafson, W. D. Goddard, “DREIDING: A generic force field for molecular simulations”, Journal of Physics Chemistry, Vol. 94, pp. 8897-8909, 1990.
[27] P. M. Agrawal, B. M. Rice, D. L. Thompson, “Predicting trend in rate parameters for self-diffusion on FCC metal surface”, Surface Science, Vol. 515, pp. 21-35, 2002.
[28] Hypercube, “HyperChem reference Manual”, 2002.
[29]CCLRC Daresbury Laboratory “THE DL_POLY_2 USER MANUAL”, 2006.
[30] H. Rensmo, K. Westermark, S. Södergren, O. Kohle, P. Persson, S. Lunell, H. Siegbahn, “XPS study of Ru-polypyridine complexes for solar cell applications”, Journal of Physics Chemistry, 111, pp. 2744-2750, 1999.
[31] M. Junghanel, H. Tributsch, “Role of nanochemical environments in porous TiO2 in photocurrent efficiency and degradation in dye sensitized solar cell”, J. Physical Chemistry B., 109, pp. 22876-22883, 2005.
[32] M.P.Allen and D.J. Tildesley, “Computer Simulation of Liquids”, Oxford Science, London, 1987.
[33] J. M. Haile, “Molecular Dynamics Simulation”, John Wiley & Sons, New York, USA, 1992.
[34] H. J. C. Berendsen, H. J. C. Berendsen, “Transport properties computed by linear response through weak coupling to a bath”, Computer Simulations in Material Science, pp. 139-155, 1991.
[35] M. Schoena; C. Hoheisel, “The mutual diffusion coefficient D12 in binary liquid model mixtures. molecular dynamics calculations based on Lennard-Jones (12-6) potentials”, Molecular Physics, Volume 52, Issue 1, pp. 33-56, 1984.
[36] J. Nelson, “The Physics of Solar Cells”, Imperial College Press, 2003.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *